首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The negative regulator of splicing (NRS) from Rous sarcoma virus suppresses viral RNA splicing and is one of several cis elements that account for the accumulation of large amounts of unspliced RNA for use as gag-pol mRNA and progeny virion genomic RNA. The NRS can also inhibit splicing of heterologous introns in vivo and in vitro. Previous data showed that the splicing factors SF2/ASF and U1, U2, and U11 small nuclear ribonucleoproteins (snRNPs) bind the NRS, and a correlation was established between SF2/ASF and U11 binding and activity, suggesting that these factors are important for function. These observations, and the finding that a large spliceosome-like complex (NRS-C) assembles on NRS RNA in nuclear extract, led to the proposal that the NRS is recognized as a minor-class 5' splice site. One model to explain NRS splicing inhibition holds that the NRS interacts nonproductively with and sequesters U2-dependent 3' splice sites. In this study, we provide evidence that the NRS interacts with an adenovirus 3' splice site. The interaction was dependent on the integrity of the branch point and pyrimidine tract of the 3' splice site, and it was sensitive to a mutation that was previously shown to abolish U11 snRNP binding and NRS function. However, further mutational analyses of NRS sequences have identified a U1 binding site that overlaps the U11 site, and the interaction with the 3' splice site correlated with U1, not U11, binding. These results show that the NRS can interact with a 3' splice site and suggest that U1 is of primary importance for NRS splicing inhibition.  相似文献   

2.
Retroviruses require both spliced and unspliced RNA for replication. Accumulation of unspliced Rous sarcoma virus RNA is facilitated in part by a negative cis element in the gag region, termed the negative regulator of splicing (NRS), which serves to repress splicing of viral RNA but can also block splicing of heterologous introns. The NRS binds components of the splicing machinery including SR proteins, U1 and U2, small nuclear ribonucleoproteins (snRNPs) of the major splicing pathway, and U11 snRNP of the minor pathway, yet splicing does not normally occur from the NRS. A mutation that abolishes U11 binding (RG11) also abrogates NRS splicing inhibition, indicating that U11 is functionally important for NRS activity and suggesting that the NRS is recognized as a minor-class 5' splice site (5' ss). We show here, using specific NRS mutations to disrupt U11 binding and coexpression of U11 snRNA genes harboring compensatory mutations, that the NRS U11 site is functional when paired with a minor-class 3' ss from the human P120 gene. Surprisingly, the expectation that the same NRS mutants would be defective for splicing inhibition proved false; splicing inhibition was as good as, if not better than, that for the wild-type NRS. Comparison of these new mutations with RG11 indicated that the latter may disrupt binding of a factor(s) other than U11. Our data suggest that this factor is U1 snRNP and that a U1 binding site that overlaps the U11 site is also disrupted by RG11. Analysis of mutations which selectively disrupted U1 or U11 binding indicated that splicing inhibition by the NRS correlates most strongly with U1 snRNP. Additionally, we show that U1 binding is facilitated by SR proteins that bind to the 5' half of the NRS, confirming an earlier proposal that this region is involved in recruiting snRNPs to the NRS. These data indicate a functional role for U1 in NRS-mediated splicing inhibition.  相似文献   

3.
The accumulation in infected cells of large amounts of unspliced viral RNA for use as mRNA and genomic RNA is a hallmark of retrovirus replication. The negative regulator of splicing (NRS) is a long cis-acting RNA element in Rous sarcoma virus that contributes to unspliced RNA accumulation through splicing inhibition. One of two critical sequences located in the NRS 3' region resembles a minor class 5' splice site and is required for U11 small nuclear ribonucleoprotein (snRNP) binding to the NRS. The second is a purine-rich region in the 5' half that interacts with the splicing factor SF2/ASF. In this study we investigated the possibility that this purine-rich region provides an RNA splicing enhancer function required for splicing inhibition. In vitro, the NRS acted as a potent, orientation-dependent enhancer of Drosophila doublesex pre-mRNA splicing, and enhancer activity mapped to the purine-rich domain. Analysis of a number of site-directed and deletion mutants indicated that enhancer activity was diffusely located throughout a 60-nucleotide area but only the activity associated with a short region previously shown to bind SF2/ASF correlated with efficient splicing inhibition. The significance of the enhancer activity to splicing inhibition was demonstrated by using chimeras in which two authentic enhancers (ASLV and FP) were substituted for the native NRS purine region. In each case, splicing inhibition in transfected cells was restored to levels approaching that observed for the NRS. The observation that a nonfunctional version of the FP enhancer (FPD) that does not bind SF2/ASF also fails to block splicing when paired with the NRS 3' region supports the notion that SF2/ASF binding to the NRS is relevant, but other SR proteins may substitute if an appropriate binding site is supplied. Our results are consistent with a role for the purine region in facilitated snRNP binding to the NRS via SF2/ASF.  相似文献   

4.
The pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein particle [snRNP] auxiliary factor) plays a critical role in 3' splice site selection. U2AF binds site specifically to the intron pyrimidine tract between the branchpoint and the 3' splice site and targets U2 snRNP to the branch site at an early step in spliceosome assembly. Human U2AF is a heterodimer composed of large (hU2AF65) and small (hU2AF35) subunits. hU2AF65 contains an arginine-serine-rich (RS) domain and three RNA recognition motifs (RRMs). hU2AF35 has a degenerate RRM and a carboxyl-terminal RS domain. Genetic studies have recently shown that the RS domains on the Drosophila U2AF subunit homologs are each inessential and might have redundant functions in vivo. The site-specific pyrimidine tract binding activity of the U2AF heterodimer has previously been assigned to hU2AF65. While the requirement for the three RRMs on hU2AF65 is firmly established, a role for the large-subunit RS domain in RNA binding remains unresolved. We have analyzed the RNA binding activity of the U2AF heterodimer in vitro. When the Drosophila small-subunit homolog (dU2AF38) was complexed with the large-subunit (dU2AF50) pyrimidine tract, RNA binding activity increased 20-fold over that of free dU2AF50. We detected a similar increase in RNA binding activity when we compared the human U2AF heterodimer and hU2AF65. Surprisingly, the RS domain on dU2AF38 was necessary for the increased binding activity of the dU2AF heterodimer. In addition, removal of the RS domain from the Drosophila large-subunit monomer (dU2AF50DeltaRS) severely impaired its binding activity. However, if the dU2AF38 RS domain was supplied in a complex with dU2AF50DeltaRS, high-affinity binding was restored. These results suggest that the presence of one RS domain of U2AF, on either the large or small subunit, promotes high-affinity pyrimidine tract RNA binding activity, consistent with redundant roles for the U2AF RS domains in vivo.  相似文献   

5.
We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.  相似文献   

6.
One of the earliest steps in pre-mRNA recognition involves binding of the splicing factor U2 snRNP auxiliary factor (U2AF or MUD2 in Saccharomyces cerevisiae) to the 3' splice site region. U2AF interacts with a number of other proteins, including members of the serine/arginine (SR) family of splicing factors as well as splicing factor 1 (SF1 or branch point bridging protein in S. cerevisiae), thereby participating in bridging either exons or introns. In vertebrates, the binding site for U2AF is the pyrimidine tract located between the branch point and 3' splice site. Many small introns, especially those in nonvertebrates, lack a classical 3' pyrimidine tract. Here we show that a 59-nucleotide Drosophila melanogaster intron contains C-rich pyrimidine tracts between the 5' splice site and branch point that are needed for maximal binding of both U1 snRNPs and U2 snRNPs to the 5' and 3' splice site, respectively, suggesting that the tracts are the binding site for an intron bridging factor. The tracts are shown to bind both U2AF and the SR protein SRp54 but not SF1. Addition of a strong 3' pyrimidine tract downstream of the branch point increases binding of SF1, but in this context, the upstream pyrimidine tracts are inhibitory. We suggest that U2AF- and/or SRp54-mediated intron bridging may be an alternative early recognition mode to SF1-directed bridging for small introns, suggesting gene-specific early spliceosome assembly.  相似文献   

7.
An integral component of the splicing machinery, the U1 snRNP, is here implicated in the efficient polyadenylation of SV40 late mRNAs. This occurs as a result of an interaction between U1 snRNP-A protein and the upstream efficiency element (USE) of the polyadenylation signal. UV cross-linking and immunoprecipitation demonstrate that this interaction can occur while U1 snRNP-A protein is simultaneously bound to U1 RNA as part of the snRNP. The target RNA of the first RRM (RRM1) has been shown previously to be the second stem-loop of U1 RNA. We have found that a target for the second RRM (RRM2) is within the AUUUGURA motifs of the USE of the SV40 late polyadenylation signal. RNA substrates containing the wild-type USE efficiently bind to U1 snRNP-A protein, whereas substrates fail to bind when motifs of the USE were replaced by linker sequences. The addition of an oligoribonucleotide containing a USE motif to an in vitro polyadenylation reaction inhibits polyadenylation of a substrate representing the SV40 late polyadenylation signal, whereas a mutant oligoribonucleotide, a nonspecific oligoribonucleotide, and an oligoribonucleotide containing the U1 RNA-binding site had much reduced or no inhibitory effects. In addition, antibodies to bacterially produced, purified U1 snRNP-A protein specifically inhibit in vitro polyadenylation of the SV40 late substrate. These data suggest that the U1 snRNP-A protein performs an important role in polyadenylation through interaction with the USE. Because this interaction can occur when U1 snRNP-A protein is part of the U1 snRNP, our data provide evidence to support a link between the processes of splicing and polyadenylation, as suggested by the exon definition model.  相似文献   

8.
Retroviruses use unspliced RNA as mRNA for expression of virion structural proteins and as genomic RNA; the full-length RNA often constitutes the majority of the viral RNA in an infected cell. Maintenance of this large pool of unspliced RNA is crucial since even a modest increase in splicing efficiency can lead to impaired replication. In Rous sarcoma virus, the negative regulator of splicing (NRS) was identified as a cis element that negatively impacts splicing of viral RNA. Components of the splicing apparatus appear to be involved in splicing inhibition since binding of a number of splicing factors (snRNPs and SR proteins) and assembly of a large complex (NRS-C) in nuclear extracts correlate with NRS-mediated splicing inhibition. In determining the requirements for NRS complex assembly, we show that NRS-C assembly can be reconstituted by addition of total SR proteins to an S100 extract that lacks these factors. Of the purified SR proteins tested, SF2/ASF was functional in NRS-C assembly, whereas SC35 and SRp40 were not. The participation of snRNPs in NRS-C assembly was addressed by selectively depleting individual snRNPs with oligonucleotides and RNase H or by sequestering critical snRNA domains with 2'-O-methyl RNA oligonucleotides. The results indicate that in addition to U11 snRNP, U1 snRNP and SR proteins, but not U2 snRNP, are involved in NRS-C assembly.  相似文献   

9.
U2 small nuclear RNA (snRNA) contains a sequence (GUAGUA) that pairs with the intron branchpoint during splicing. This sequence is contained within a longer invariant sequence of unknown secondary structure and function that extends between U2 and I and stem IIa. A part of this region has been proposed to pair with U6 in a structure called helix III. We made mutations to test the function of these nucleotides in yeast U2 snRNA. Most single base changes cause no obvious growth defects; however, several single and double mutations are lethal or conditional lethal and cause a block before the first step of splicing. We used U6 compensatory mutations to assess the contribution of helix III and found that if it forms, helix III is dispensable for splicing in Saccharomyces cerevisiae. On the other hand, mutations in known protein components of the splicing apparatus suppress or enhance the phenotypes of mutations within the invariant sequence that connect the branchpoint recognition sequence to stem IIa. Lethal mutations in the region are suppressed by Cus1-54p, a mutant yeast splicing factor homologous to a mammalian SF3b subunit. Synthetic lethal interactions show that this region collaborates with the DEAD-box protein Prp5p and the yeast SF3a subunits Prp9p, Prp11p, and Prp21p. Together, the data show that the highly conserved RNA element downstream of the branchpoint recognition sequence of U2 snRNA in yeast cells functions primarily with the proteins that make up SF3 rather than with U6 snRNA.  相似文献   

10.
11.
12.
The Saccharomyces cerevisiae TIF3 gene encodes a 436-amino acid (aa) protein that is the yeast homologue of mammalian translation Initiation factor eIF4B. Tif3p can be divided into three parts, the N-terminal region with an RNA recognition motif (RRM) (aa 1-182), followed in the middle part by a sevenfold repeat of 26 amino acids rich in basic and acidic residues (as 183-350), and a C-terminal region without homology to any known sequence (aa 351-436). We have analyzed several Tif3 proteins with deletions at their N and C termini for their ability (1) to complement a tif3delta strain in vivo, (2) to stimulate Tif3-dependent translation extracts, (3) to bind to single-stranded RNA, and (4) to catalyze RNA strand-exchange in vitro. Here we report that yeast Tif3/eIF4B contains at least two RNA binding domains able to bind to single-stranded RNA. One is located in the N-terminal region of the protein carrying the RRM, the other in the C-terminal two-thirds region of Tif3p. The RRM-containing domain and three of the seven repeat motifs are essential for RNA strand-exchange activity of Tif3p and translation in vitro and for complementation of a tif3delta strain, suggesting an important role for RNA strand-exchange activity in translation.  相似文献   

13.
A protein essential for pre-mRNA splicing, the U2 auxiliary factor (U2AF), is composed of a large and small subunit. Previously we cloned and characterized both subunits, spU2AF59 and spU2AF23, from fission yeast. We now report a novel U2AF-associated-protein, spUAP2, which interacts with both subunits. SpUAP2 contains a classical and a degenerate RNA recognition motif (RRM), both of which are required for interaction with spU2AF59. Interaction also requires the arginine/serine-rich region and the first RRM of spU2AF59. A null allele of the gene for spUAP2 is lethal.  相似文献   

14.
The large subunit of the mammalian U2AF heterodimer (U2AF65) is essential for splicing in vitro. To expand our understanding of how this protein functions in vivo, we have created a null allele of the gene encoding the Schizosaccharomyces pombe ortholog, U2AF59, and employed it in a variety of genetic complementation assays. First, analysis of an extensive series of double amino acid substitutions indicates that this splicing factor is surprisingly refractory to mutations. Second, despite extensive structural conservation, we find that metazoan large subunit orthologs cannot substitute in vivo for fission yeast U2AF59. Third, because the activity of U2AF65 in vitro involves binding to the 3' polypyrimidine tract, we examined the splicing of introns containing or lacking this feature in a U2AF59 mutant described here as well as a previously isolated temperature-sensitive mutant (Potashkin et al., 1993, Science 262:573-575). Our data indicate that all four introns tested, including two that lack extensive runs of pyrimidines between the branchpoint and 3' splice site, show splicing defects upon shifting to the nonpermissive condition. In all cases, splicing is blocked prior to the first transesterification reaction in the mutants, consistent with the role inferred for human U2AF65 based on in vitro experiments.  相似文献   

15.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

16.
hnRNP A1 regulates alternative splicing by antagonizing SR proteins. It consists of two closely related, tandem RNA-recognition motifs (RRMs), followed by a glycine-rich domain. Analysis of variant proteins with duplications, deletions, or swaps of the RRMs showed that although both RRMs are required for alternative splicing function, each RRM plays distinct roles, and their relative position is important. Surprisingly, RRM2 but not RRM1 could support this function when duplicated, despite their very similar structure. Specific RNA binding and annealing are not sufficient for hnRNP A1 alternative splicing function. These observations, together with phylogenetic and structural data, suggest that the two RRMs are quasi-symmetric but functionally nonequivalent modules that evolved as components of a single bipartite domain.  相似文献   

17.
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain.  相似文献   

18.
BACKGROUND: The dynamic rearrangements of RNA structure which occur during pre-mRNA splicing are thought to be mediated by members of the DExD/H-box family of RNA-dependent ATPases. Although three DExD/H-box splicing factors have recently been shown to unwind synthetic RNA duplexes in purified systems, in no case has the natural biological substrate been identified. A duplex RNA target of particular interest is the extensive base-pairing interaction between U4 and U6 small nuclear RNAs. Because these helices must be disrupted to activate the spliceosome for catalysis, this rearrangement is believed to be tightly regulated in vivo. RESULTS: We have immunopurified Brr2, a DEIH-box ATPase, in a native complex containing U1, U2, U5 and duplex U4/U6 small nuclear ribonucleoprotein particles (snRNPs). Addition of hydrolyzable ATP to this complex results in the disruption of U4/U6 base-pairing, and the release of free U4 and U6 snRNPs. A mutation in the helicase-like domain of Brr2 (brr2-1) prevents these RNA rearrangements. Notably, U4/U6 dissociation and release occur in the absence of exogenously added pre-mRNA. CONCLUSIONS: Disruption of U4/U6 base-pairing in native snRNPs requires ATP hydrolysis and Brr2. This is the first assignment of a DExD/H-box splicing factor to a specific biological unwinding event. The unwinding function of Brr2 can be antagonized by the annealing activity of Prp24. We propose the existence of a dynamic cycle, uncoupled from splicing, that interconverts free and base-paired U4/U6 snRNPs.  相似文献   

19.
In trypanosomes all mRNAs are generated through trans mRNA splicing, requiring the functions of the small nuclear RNAs U2, U4 and U6. In the absence of conventional cis mRNA splicing, the structure and function of a U5-analogous snRNP in trypanosomes has remained an open question. In cis splicing, a U5 snRNP-specific protein component called PRP8 in yeast and p220 in man is a highly conserved, essential splicing factor involved in splice-site recognition and selection. We have cloned and sequenced a genomic region from Trypanosoma brucei, that contains a PRP8/p220-homologous gene (p277) coding for a 277 kDa protein. Using an antibody against a C-terminal region of the trypanosomal p277 protein, a small RNA of approximately 65 nucleotides could be specifically co-immunoprecipitated that appears to be identical with a U5 RNA (SLA2 RNA) recently identified by Dungan et al. (1996). Based on sedimentation, immunoprecipitation and Western blot analyses we conclude that this RNA is part of a stable ribonucleoprotein (RNP) complex and associated not only with the p277 protein, but also with the common proteins present in the other trans-spliceosomal snRNPs. Together these results demonstrate that a U5-analogous RNP exists in trypanosomes and suggest that basic functions of the U5 snRNP are conserved between cis and trans splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号