首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Removal of Pb(II) by using resting cells of anaerobically digested sludge (ADS) obtained from a nearby wastewater treatment plant was examined. Firstly, sorption kinetic and equilibrium experiments were conducted using agitated, thermostated (25 degrees C) batch reactors. The maximum Pb(II) sorption capacity was found to be very high (1,750 mg/g dry ADS or 8.45 mmol/g dry ADS). At all initial Pb(II) concentrations tested, sorption resulted in neutralization with an increase in the solution pH from an initial value of 4.0-5.5 to an equilibrium value of 7.0-8.0, at which Pb(II) can precipitate as hydroxide. The removal of Pb(II) by ADS was found to involve bioprecipitation as well as biosorption. FTIR spectrometry highlighted carboxyl groups present on the surface of ADS as the major functional groups responsible for biosorption. Secondly, a three-stage semi-continuous pseudo-counter current reactor system was tested to reduce ADS requirement in comparison to a conventional single-stage batch reactor. At an initial Pb(II) concentration of about 200 mg/L, an effluent Pb(II) concentration of 1.3 mg/L was achieved in the three stage reactor, corresponding to a metal removal capacity of 682.7 mg/g dry ADS (3.30 mmol/g), in comparison to 1.9 mg/L and 644.0 mg/g dry ADS (3.10 mmol/g) for the single-stage batch reactor.  相似文献   

2.
The biosorption of cadmium(II) ions on Oedogonium sp. is studied in a batch system with respect to initial pH, algal dose, contact time and the temperature. The algal biomass exhibited the highest cadmium(II) uptake capacity at 25 degrees C, at the initial pH value of 5.0 in 55 min and at the initial cadmium(II) ion concentration of 200 mg L(-1). Biosorption capacity decreased from 88.9 to 80.4 mg g(-1) with an increase in temperature from 25 to 45 degrees C at this initial cadmium(II) concentration. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. Acid pretreatments did not substantially increase metal sorption capacity but alkali like NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles at the end of fifth cycle, Cd(II) sorption decreased by 18%, with 15-20% loss of biomass. Nevertheless, Oedogonium sp. appears to be a good sorbent for removing metal Cd(II) from aqueous phase.  相似文献   

3.
Biosorption is a recent technology used to remove heavy metal ions from aqueous solutions. The biosorption of copper ions from aqueous solution by dried activated sludge was investigated in batch systems. Effect of solution pH, initial metal concentration and particle size range were determined. The suitable pH and temperature for studied conditions were determined as 4.0 and 20 °C, respectively. The theoretical max biosorption capacity of activated sludge was 294 mg g−1 at 20 °C for <0.063 mm particle size. The equilibrium data fitted very well to both Langmuir and Freundlich isotherm models. The pseudo first and second-order kinetic models were used to describe the kinetic data. The experimental data fitted to second-order kinetic model. The particle size and initial metal concentration were effected the biosorption capacity of dried activated sludge. An increase in the initial metal concentration increases of biosorption capacity, which also increases with decreasing particle size. Dried activated sludge has different functional groups according to the FT-IR results.  相似文献   

4.
Biosorption is the effective method for the removal of heavy metal ions from wastewaters. Results are presented showing the sorption of Pb(II) from solutions by biomass of commonly available, filamentous green algae Spirogyra sp. Batch experiments were conducted to determine the biosorption properties of the biomass and it was observed that the maximum adsorption capacity of Pb(II) ion was around 140mgmetal/g of biomass at pH 5.0 in 100min with 200mg/L of initial concentration. Temperature change in the range 20-40 degrees C affected the adsorption capacity and the nature of the reaction was found to be endothermic in nature. Uptake kinetics follows the pseudo-second-order model and equilibrium is well described by Langmuir isotherm. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change. Various properties of the algae, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, thermal analysis by TGA, surface area calculation by BET method, surface morphology with scanning electron microscope images and surface functionality by FTIR. FTIR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which are responsible for biosorption of metal ions. The results indicated that the biomass of Spirogyra sp. is an efficient biosorbent for the removal of Pb(II) from aqueous solutions.  相似文献   

5.
The biosorption characteristics of Cd(II) ions using the red alga (Ceramium virgatum) were investigated. Experimental parameters affecting the biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms. The biosorption capacity of C. virgatum biomass for Cd(II) ions was found to be 39.7 mg/g. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol, indicating that the biosorption of Cd(II) the metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Cd(II) ions onto C. virgatum was feasible, spontaneous and exothermic at 293-323 K. Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of Cd(II) C. virgatum followed well pseudo-second-order kinetics.  相似文献   

6.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the macrofungus (Amanita rubescens) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by A. rubescens biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum biosorption capacity of A. rubescens for Pb(II) and Cd(II) was found to be 38.4 and 27.3mg/g, respectively, at optimum conditions of pH 5.0, contact time of 30min, biomass dosage of 4 g/L, and temperature of 20 degrees C. The metal ions were desorbed from A. rubescens using both 1M HCl and 1M HNO(3). The recovery for both metal ions was found to be higher than 90%. The high stability of A. rubescens permitted ten times of adsorption-elution process along the studies without a decrease about 10% in recovery of both metal ions. The mean free energy values evaluated from the D-R model indicated that the biosorption of Pb(II) and Cd(II) onto A. rubescens biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, DeltaG degrees , DeltaH degrees and DeltaS degrees showed that the biosorption of Pb(II) and Cd(II) ions onto A. rubescens biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both Pb(II) and Cd(II) followed well pseudo-second-order kinetics. Based on all results, It can be also concluded that it can be evaluated as an alternative biosorbent to treatment wastewater containing Pb(II) and Cd(II) ions, since A. rubescens is low-cost biomass and has a considerable high biosorption capacity.  相似文献   

7.
ABSTRACT

Leucaena biomass waste was used for preparation of activated carbon by chemical activation using KOH and pyrolysis in a muffle furnace at 800°C for 30 min. Leucaena activated carbon (LAC) as a sorbent material was used for removal of Cu (II) and Pb (II) ions from aqueous solutions. The present study reveals that LAC is efficient sorpent, fast kinetics, as easy to handle, and small amount of secondary sludge produced. The isotherm, kinetics, and thermodynamics of Cu (II) and Pb (II) sorptions by LAC were investigated. The isothermal data were found to be correlated with the Langmuir model better than the Freundlich model. The maximum sorption capacity (Q0) for the studied sorbent toward Pb (II) and Cu (II) was 32.18 and 7.89 mg/g, respectively. The experimental data show that the external diffusion and intra-particular diffusion are significant in the determination of the sorption. The thermodynamic parameters indicated that the sorption processes were spontaneous and endothermic in nature.  相似文献   

8.
In this study, the biosorption of nickel(II) ions on Enteromorpha prolifera, a green algae, was investigated in a batch system. The single and combined effects of operating parameters such as initial pH, temperature, initial metal ion concentration and biosorbent concentration on the biosorption of nickel(II) ions on E. prolifera were analyzed using response surface methodology (RSM). The optimum biosorption conditions were determined as initial pH 4.3, temperature 27 degrees C, biosorbent concentration 1.2 g/L and initial nickel(II) ion concentration 100 mg/L. At optimum biosorption conditions, the biosorption capacity of E. prolifera for nickel(II) ions was found to be 36.8 mg/g after 120 min biosorption. The Langmuir and Freundlich isotherm models were applied to the equilibrium data and defined very well both isotherm models. The monolayer coverage capacity of E. prolifera for nickel(II) ions was found as 65.7 mg/g. In order to examine the rate limiting step of nickel(II) biosorption, such as the mass transfer and chemical reaction kinetics, the intraparticle diffusion model, external diffusion model and the pseudo second order kinetic model were tested with the experimental data. It was found that for both contributes to the actual biosorption process. The pseudo second order kinetic model described the nickel(II) biosorption process with a good fitting.  相似文献   

9.
Biosorption of toxic metal ions from industrial effluents using different plant parts is an important branch of environmental chemistry. Biosorption of copper(II) and chromium(VI) ions from aqueous solution onto sorghum root (SR) powder have been investigated under batch mode. The optimum pH and temperature for biosorption of both the metals was found to be 2 and 20 °C, respectively. The maximum biosorption capacity q e for Cu(II) and Cr(VI) is 18.6 and 18.39 mg/g, respectively. The Langmuir model gave a better fit than other two models. The kinetic studies indicated that the biosorption process of the metal ions followed well pseudo-second-order model. The thermodynamic parameters were also calculated and the values indicated that the biosorption process was exothermic, spontaneous, and feasible in nature. Desorption experiments with 1 M HCl and 1 M HNO3 inferred the reusability of biomass. The results showed that SRs have excellent adsorption properties and thus can be used as an effective and low cost biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solution.  相似文献   

10.
Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (qmax 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (qmax 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.  相似文献   

11.
Eleven different species of marine macroalgae were screened at different pH conditions on the basis of zinc(II) biosorption potential. Among the seaweeds, a green alga, Ulva reticulata, exhibited a highest uptake of 36.1 mg/g at pH 5.5 and 100 mg/l initial zinc(II) concentration. Further experiments were conducted to evaluate the zinc(II) biosorption potential of U. reticulata. Sorption isotherm data obtained at different pH (5-6) and temperature (25-35 degrees C) conditions were fitted well with Sips model followed by Freundlich, Redlich-Peterson and Langmuir models. A maximum zinc(II) biosorption capacity of 135.5 mg/g was observed at optimum conditions of 5.5 (pH) and 30 degrees C (temperature), according to the Langmuir model. It was observed from the kinetic data that the zinc(II) biosorption process using U. reticulata follows pseudo-second-order kinetics. Various thermodynamic parameters, such as DeltaG degrees , DeltaH degrees and DeltaS degrees were calculated and they indicated that the present system was a spontaneous and an endothermic process. The influence of the co-ions (Na(+), K(+), Ca(2+) and Mg(2+)) along with zinc(II) present in the wastewater was also studied. Desorption of zinc(II) ions from the zinc(II)-loaded biomass were examined using 0.1 M CaCl(2) at different pH conditions in three sorption-desorption cycles. A fixed-bed column (2 cm i.d. and 35 cm height) was employed to evaluate the continuous biosorption performance of U. reticulata. The column experiments at different bed heights and flow rates revealed that the maximum zinc(II) uptake was obtained at the highest bed height (25 cm) and the lowest flow rate (5 ml/min). Column data were fitted well with Thomas, Yoon-Nelson and modified dose-response models. The column regeneration studies were carried out for three sorption-desorption cycles. A loss of sorption performance was observed during regeneration cycles indicated by a shortened breakthrough time and a decreased zinc(II) uptake.  相似文献   

12.
The biosorption characteristics of Pb(II) and Cd(II) ions from aqueous solution using the green alga (Ulva lactuca) biomass were investigated as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by U. lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of U. lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7mg/g and 29.2mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 10.4kJ/mol for Pb(II) biosorption and 9.6kJ/mol for Cd(II) biosorption, indicating that the biosorption of both metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Pb(II) and Cd(II) ions onto U. lactuca biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

13.
The biosorption process for the removal of nickel(II) by loofa sponge-immobilized biomass of Chlorella sorokiniana (LIBCS), a newly developed immobilized biosorbent, was characterized. Effects of environmental factors on metal uptake capacity of LIBCS were studied and compared with free biomass of C. sorokiniana (FBCS). Nickel(II) removal by LIBCS was found to be influenced by pH of the solution, initial metal concentration, and biomass concentration. The biosorption of nickel(II) ions by both LIBCS and FBCS increased as the initial concentration of nickel(II) ions increased in the medium. No loss to biosorption capacity of LIBCS for nickel(II) was found due to the presence of loofa sponge, indeed as compared to FBCS an increase of 25.3% was noted in the biosorption capacity of LIBCS. Maximum biosorption capacities for FBCS and LIBCS were found as 48.08 and 60.38 mg nickel(II)/g, respectively, whereas the amount of nickel(II) ions adsorbed on the plain loofa sponge was 6.1mg/g. During these biosorption studies, LIBCS exhibited excellent physical and chemical stability without any significant release/loss of microalgal biomass from loofa sponge matrix. The kinetics of nickel(II) removal was extremely fast reaching at equilibrium in about 15 min for LIBCS and 20 min for FBCS. The biosorption equilibrium was well described by the Langmuir and Freundlich adsorption isotherms. The biosorption capacities were found to be solution pH dependent and the maximum adsorption was found at a solution pH 4-5. The LIBCS could be regenerated using 75 mM HCl, with up to 98% recovery. The LIBCS were shown to be robust and stable with little decrease in the nickel(II) uptake capacity when used in consecutive seven biosorption-desorption cycles. Continuous removal of nickel(II) from electroplating effluent by LIBCS packed in fixed bed column bioreactor confirm the possibility of developing a biological treatment process for the removal of toxic metals from authentic wastewater.  相似文献   

14.
The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as DeltaG degrees, DeltaH degrees and DeltaS degrees calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb2+ ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.  相似文献   

15.
Sorption and degradation of bisphenol A by aerobic activated sludge   总被引:2,自引:0,他引:2  
Laboratory-scale batch experiments were conducted to investigate the sorption and degradation of bisphenol A (BPA) at μg/L range in an aerobic activated sludge system. The sorption isotherms and thermodynamics indicated that the sorption of BPA on sludge was mainly a physical process in which partitioning played a dominating role. The values of sorption coefficient Koc were between 621 and 736 L/kg in the temperature range of 10–30 °C. Both mixed liquor suspended solid (MLSS) and temperature influenced BPA sorption on sludge. The degradation of BPA by acclimated activated sludge could be described by first-order reaction equation with the first-order degradation rate constant of 0.80 h−1 at 20 °C. The decrease of initial COD concentration and the increase of MLSS concentration and temperature enhanced BPA degradation rate. The removal of BPA in the activated sludge system was characterized by a quick sorption on the activated sludge and subsequent biodegradation.  相似文献   

16.
The present study explores the ability of Cassia fistula waste biomass to remove Ni(II) from industrial effluents. C. fistula biomass was found very effective for Ni(II) removal from wastewater of Ghee Industry (GI), Nickel Chrome Plating Industry (Ni-Cr PI), Battery Manufacturing Industry (BMI), Tanner Industry: Lower Heat Unit (TILHU), Tannery Industry: Higher Heat Unit (TIHHU), Textile Industry: Dying Unit (TIDU) and Textile Industry: Finishing Unit (TIFU). The initial Ni(II) concentration in industrial effluents was found to be 34.89+/-0.01, 183.56+/-0.08, 21.19+/-0.01, 43.29+/-0.03, 47.26+/-0.02, 31.38+/-0.01 and 31.09+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. After biosorption the final Ni(II) concentration in industrial effluents was found to be 0.05+/-0.01, 17.26+/-0.08, 0.03+/-0.01, 0.05+/-0.01, 0.1+/-0.01, 0.07+/-0.01 and 0.06+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. The % sorption Ni(II) ability of C. fistula from seven industries included in present study tend to be in following order: TILHU (99.88)>GI (99.85) approximately BMI (99.85)>TIFU (99.80)>TIHHU (99.78)>TIDU (99.77)>Ni-Cr PI (90.59). Sorption kinetic experiments were performed in order to investigate proper sorption time for Ni(II) removal from wastewater. Batch metal ion uptake capacity experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater samples (480min) in comparison to synthetic wastewater (1440min) using same biosorbent. The kinetic data were analyzed in term of pseudo-first-order and pseudo-second-order expressions. Pseudo-second-order model described well the sorption kinetics of Ni(II) onto C. fistula biomass from industrial effluents in comparison to pseudo-first-order kinetic model. Due to unique high Ni(II) sorption capacity of C. fistula waste biomass it can be concluded that it is an excellent biosorbent for Ni(II) uptake from industrial effluents.  相似文献   

17.
Waste sludge samples from different plants were tested for Cu(II) ion biosorption capacities with and without pre-treatment. Waste sludge from a paint industry wastewater treatment plant was found to perform better than the others after pre-treatment with 1% H(2)O(2). Powdered waste sludge (PWS) from the paint industry wastewater treatment plant was used for recovery of Cu(II) ions from aqueous solution by biosorption after pre-treatment with 1% H(2)O(2). Batch kinetics and isotherms of biosorption of Cu(II) ions were investigated at variable initial Cu(II) concentrations between 50 and 400 mg l(-1) with a PWS particle size of 64 microm. The pseudo-first and -second order kinetic models were used to correlate the experimental data. The kinetic constants were determined for both models and the second order kinetic model was found to be more suitable. The Langmuir, Freundlich and the generalized isotherm models were used to correlate the equilibrium biosorption data and the isotherm constants were determined. The Langmuir isotherm was found to fit the experimental data better than the other isotherms tested. The maximum biosorption capacity (116 mg g(-1)) of the pre-treated powdered waste sludge for Cu(II) ions was found to be superior as compared to the other biosorbents reported in literature.  相似文献   

18.
The objective of this work was to propose an alternative use for coffee husks (CH), a coffee processing residue, as untreated sorbents for the removal of heavy metal ions from aqueous solutions. Biosorption studies were conducted in a batch system as a function of contact time, initial metal ion concentration, biosorbent concentration and pH of the solution. A contact time of 72 h assured attainment of equilibrium for Cu(II), Cd(II) and Zn(II). The sorption efficiency after equilibrium was higher for Cu(II) (89-98% adsorption), followed by Cd(II) (65-85%) and Zn(II) (48-79%). Even though equilibrium was not attained in the case of Cr(VI) ions, sorption efficiency ranged from 79 to 86%. Sorption performance improved as metal ions concentrations were lowered. The experimental sorption equilibrium data were fitted by both Langmuir and Freundlich sorption models, with Langmuir providing the best fit (R2>0.95). The biosorption kinetics was determined by fitting first and second-order kinetic models to the experimental data, being better described by the pseudo-second-order model (R2>0.99). The amount of metal ions sorbed increased with the biosorbent concentration in the case of Cu(II) and Cr(VI) and did not present significant variations for the other metal ions. The effect of the initial pH in the biosorption efficiency was verified in the pH range of 4-7, and the results showed that the highest adsorption capacity occurred at distinct pH values for each metal ion. A comparison of the maximum sorption capacity of several untreated biomaterial-based residues showed that coffee husks are suitable candidates for use as biosorbents in the removal of heavy metals from aqueous solutions.  相似文献   

19.
Biosorption of heavy metal ions from aqueous solution by red macroalgae   总被引:1,自引:0,他引:1  
Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment.  相似文献   

20.
The bioremediation was employed to treat perchlorate-contaminated water. All enrichments and growth of mixed cultures were performed in anaerobic acetate medium. Enrichment cultures were started with activated sludge obtained from a local wastewater treatment plant where it predominantly treats domestic wastewater. Several parameters affecting perchlorate removal were examined through batch experiments, these include the amount of domesticated sludge, the acetate concentration, pH, the C/N ratio and the reaction temperature. The results indicated that acetate was an effective carbon source and electron donor. Under the selected conditions, namely 1.0 g domesticated sludge, an acetate concentration of 1.2 g l(-1), pH 8.0, a C/N ratio of 20 at 40 degrees C, 50 mg l(-1) perchlorate could be rapidly reduced to non-detectable levels within 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号