首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new type of chromatographic immunoassay based on sequential addition is described. On a protein A column, the antibody, the sample containing the antigen, and then a known amount of antigen are sequentially injected. This assay is designed to shorten analysis times and reduce complexity of dual-column chromatographic immunoassays, circumvent desorption buffer interferences common to affinity chromatography, and eliminate the need for tagged molecules. This new technique is named kinetic immunochromatography sequential addition (KICQA). Because of its kinetic nature, flow rate will have a large effect on KICQA, and the impact of changing flow rate is studied extensively. By use of various amounts of antibody, the dynamic range of KICQA is shown to be selectable over 2.5 orders of magnitude. Finally, KICQA was used to determine transferrin and albumin in human serum. Both analytes show good agreement with their respective reference methods, and an albumin assay was performed in under 1 min.  相似文献   

2.
This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells.  相似文献   

3.
Although immobilization of antigen-specific immunoglobulins onto matrix-assisted laser desorption/ionization (MALDI) targets allows the specific detection and enrichment of an antigen from complex biological fluids, the process of antibody immobilization is not optimal. The principal reason is that the antibody can bind to the template in various orientations, many of which block antigen recognition. An affinity capture MALDI mass spectrometry methodology was developed by covalently immobilizing an Fc receptor (recombinant protein G) onto MALDI gold targets for the purpose of orientating an immunoglobulin G, with the Fab domains pointing away from the target surface. The pregnancy and cancer marker, human chorionic gonadotropin beta core fragment (hCGbetacf), was our chosen test substance. To optimize the methodology, different surface densities of protein G and immunoglobulin were achieved by employing varying concentrations for immobilization. Captured amounts of hCGbetacf were compared using an external standard (cytochrome c). Orientation of immunoglobulin resulted in an approximately 3-fold increase in MALDI signal compared to using randomly immobilized antibody. Higher antibody concentrations resulted in diminished MALDI signals, which were explained by steric hindrance. Purification and enrichment of hCGbetacf was achieved from a test solution containing contaminant peptides and proteins using oriented immunoglobulins on-target.  相似文献   

4.
The technique of high-performance affinity chromatography (HPAC) is applied to the quantitative determination of antibodies to human growth hormone (hGH) in serum from patients. An affinity column consisting of covalently immobilized protein G on a rigid support is used to capture the antibodies. Texas Red labeled hGH (hGH-TR) is used as a fluorescence probe for detecting the anti-hGH antibodies. Calibration curves are established by using a well-characterized monoclonal antibody to hGH (GHC101). The minimum detectable concentration (MDC) of anti-hGH antibody in serum is 250 ng/mL (this represents 10 ng of anti-hGH injected onto the protein G column). Analytical recoveries are 92-110% for seven replicates with 250-4000 ng/mL of GHC101. A precision of 15% relative standard deviation (RSD) can be achieved at the MDC. The precision is better above the detection limit. The linear dynamic range of the method is approximately 2 orders of magnitude. The total fluorescence recovery from the affinity column is greater than or equal to 96%. Sample analysis times are on the order of 20 min. The HPAC technique gives results in absolute units of concentration that correlate well with binding capacity values determined by radioimmunoassay.  相似文献   

5.
In this paper, we report the role of surfactants in minimizing nonspecific protein adsorption in liquid crystal (LC)-based immunoassays in which LC is used as a readout system. Among all surfactants tested, only nonionic surfactant such as Tween 20 can effectively reduce the nonspecific protein adsorption, while maintaining the selectivity of the LC-based immunoassay. We also show that to minimize nonspecific protein adsorption, Tween 20 can be added directly into the antibody solution to a final concentration of 0.8 mM. After the addition of Tween 20, better correlations between the antibody concentrations and the interference colors of LCs can therefore be obtained. For example, when Cy3 antibiotin was used, black, yellow, red, and green interference colors correspond to a concentration of 5, 25, 50, and 100 μg/mL, respectively. This feature gives LC immunoassay a unique advantage over the fluorescence-based immunoassay.  相似文献   

6.
Liu Y  Tang X  Liu F  Li K 《Analytical chemistry》2005,77(13):4248-4256
This paper described a new strategy for rapid selecting ligands for application in affinity chromatography using a quartz crystal microbalance (QCM) biosensor. An aminoglycoside antibiotic drug, kanamycin (KM), was immobilized on the gold electrodes of the QCM sensor chip. The binding interactions of the immobilized KM with various proteins in solution were monitored as the variations of the resonant frequency of the modified sensor. Such a rapid screen analysis of interactions indicated clearly that KM-immobilized sensor showed strong specific interaction only with lysozyme (LZM). The resultant sensorgrams were rapidly analyzed by using a kinetic analysis software based on a genetic algorithm to derive both the kinetic rate constants (k(ass) and k(diss)) and equilibrium dissociation constants (K(D)) for LZM-KM interactions. The immobilized KM showed higher affinity to LZM with a dissociation constant on the order of 10(-5) M, which is within the range of 10(-4)-10(-8) M and suitable for an affinity ligand. Therefore, KM was demonstrated for the first time as a novel affinity ligand for purification of LZM and immobilized onto the epoxy-activated silica in the presence of a high potassium phosphate concentration. The KM immobilized affinity column has proved useful for a very convenient purification of LZM from chicken egg white. The purity of LZM obtained was higher than 90%, as determined by densitometric scanning of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified fraction. These results confirmed that the selected KM ligand is indeed a valuable affinity ligand for purification of LZM. The new screening strategy based on a QCM biosensor is expected to be a promising way for rapid selecting specific ligands for purifying other valuable proteins.  相似文献   

7.
Mallik R  Wa C  Hage DS 《Analytical chemistry》2007,79(4):1411-1424
Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77-81% of this protein to maleimide- or iodoacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, nonspecific binding, stability, and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations.  相似文献   

8.
9.
Glycopeptides prepared from 1 nmol of a mixture of glycoproteins, transferrin, and ribonuclease B by lysylendopeptidase digestion were isolated by lectin and cellulose column chromatographies, and then they were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and MALDI-quadrupole ion trap (QIT)-TOF mass spectrometry which enables the performance of MS ( n ) analysis. The lectin affinity preparation of glycopeptides with Sambucus nigra agglutinin and concanavalin A provides the glycan structure outlines for the sialyl linkage and the core structure of N-glycans. Such structural estimation was confirmed by MALDI-TOF MS and MALDI-QIT-TOF MS/MS. Amino acid sequences and location of glycosylation sites were determined by MALDI-QIT-TOF MS/MS/MS. Taken together, the combination of lectin column chromatography, MALDI-TOF MS, and MALDI-QIT-TOF MS ( n ) provides an easy way for the structural estimation of glycans and the rapid analysis of glycoproteomics.  相似文献   

10.
This work presents new frontal affinity chromatography (FAC) methodologies for high-throughput screening of compound libraries, designed to increase screening rates and improve sensitivity and ruggedness in performance. A FAC column constructed around the enzyme N-acetylglucosaminyltransferase V (GnT-V) was implemented in the identification of potential enzyme inhibitors from two libraries of trisaccharides. Effluent from the FAC column was fractionated, sequentially processed via LC/MS, and referenced to a similar analysis through a control FAC column lacking the enzyme. The resulting multidimensional data sets were compared across corresponding sample and control fractions to identify binders, in a semiautomated approach. A strong binder in the protonated form at m/z 795 was identified from the first library of 81 compounds, exhibiting an estimated Kd value of 0.3 microM. Other binders yielded Kd values ranging from 0.35 to 3.35 microM. To demonstrate the improvement in performance of this FAC-LC/MS approach over the conventional online FAC/MS approach, 15 compounds from this library were blended with a second library of 1000 synthetic trisaccharides and screened against GnT-V. All ligands in the 15-compound set were identified in this larger screen, and no ligands of greater affinity than compound 1 were found. Our results show that FAC-LC/MS is a reliable method for screening large compound libraries directly and useful for large-scale ligand discovery initiatives.  相似文献   

11.
A protocol combining immobilized metal ion affinity chromatography and beta-elimination with concurrent Michael addition has been developed for enhanced analysis of protein phosphorylation. Immobilized metal ion affinity chromatography was initially used to enrich for phosphorylated peptides. Beta-elimination, with or without concurrent Michael addition, was then subsequently used to simultaneously elute and derivatize phosphopeptides bound to the chromatography resin. Derivatization of the phosphate facilitated the precise determination of phosphorylation sites by MALDI-PSD/LIFT tandem mass spectrometry, avoiding complications due to ion suppression and phosphate lability in mass spectrometric analysis of phosphopeptides. Complementary use of immobilized metal ion affinity chromatography and beta-elimination with concurrent Michael addition in this manner circumvented several inherent disadvantages of the individual methods. In particular, (i) the protocol discriminated O-linked glycosylated peptides from phosphopeptides prior to beta-elimination/Michael addition and (ii) the elution of peptides from the chromatography resin as derivatized phosphopeptides distinguished them from unphosphorylated species that were also retained. The chemical derivatization of phosphopeptides greatly increased the information obtained during peptide sequencing by mass spectrometry. The combined protocol enabled the detection and sequencing of phosphopeptides from protein digests at low femtomole concentrations of initial sample and was employed to identify novel phosphorylation sites on the cell adhesion protein p120 catenin and the glycoprotein fetuin.  相似文献   

12.
Immobilized metal affinity chromatography (IMAC) was investigated for its ability to characterize the histidine-related surface structure of a protein, that is, a histidine residue's surface accessibility and its potential involvement in intramolecular interactions. T4 lysozyme was chosen as the model protein. Seven amino acid sites were selected on the basis of their relative surface accessibility, and they were substituted with histidine via site-directed protein mutagenesis to generate seven T4 lysozyme variants, each containing only one histidine residue on its surface, with various surface accessibility. IMAC was then used to experimentally quantify the interaction of each lysozyme variant with immobilized copper ions. A direct correlation was shown between the protein binding affinity and the surface accessibility of the histidine residue. Of all the lysozyme variants, K83H and K147H showed unusually low binding strength, as compared with variants having a histidine residue with a similar surface accessibility. However, with the aid of molecular modeling, their relatively low binding affinities were predicted to be the result of the involvement of the histidine residue in intramolecular interactions. In contrast to previously reported results, our results showed that lysozyme still binds to the IMAC column, even if its histidine residue is involved in intramolecular bonding, such as a hydrogen bond, albeit at reduced strength, as compared with the variant containing a histidine residue with a similar surface accessibility.  相似文献   

13.
14.
《Separations Technology》1992,2(4):176-182
Radial flow chromatography can provide high volumetric flow rates with small bed pressures. It is advantageous for use in affinity chromatography in which resolution requirements can be easily achieved because of highly selective biospecific binding. In this work a general multicomponent kinetic rate model has been formulated for the simulation of various aspects of radial flow affinity chromatography. The model accounts for radial dispersion, external mass transfer, intraparticle diffusion, second-order kinetics, and reactions between soluble ligands and the macromolecules in the elution stage of affinity chromatography. The model is solved with an efficient and robust numeric procedure that uses the finite element, the orthogonal collocation, and the Gear's stiff methods. Kinetic effects have been studied and compared with mass transfer effects. The three stages of affinity chromatography—frontal adsorption, wash, and elution—have been simulated. The effects of the concentration and the affinity of the soluble ligands used in the elution stage have been discussed.  相似文献   

15.
Protein A based rapid affinity chromatography for quantitation of various immunoglobulins of class G (IgG) is described. Three-minute analysis using either citrate or phosphate buffers and detection with 220- or 280-nm ultraviolet absorption was found to be optimum for quantitation of IgG from 0.25 to 250 micrograms of IgG on-column with a percent relative standard deviation (% RSD) of 2-3% RSD. The method has a detection limit estimated to be 100 ng of IgG on-column. It has been used to analyze a variety of IgG-containing samples from such diverse sources as hybridoma selection, media cultivation, and purification studies. Gradient elution studies and the relationship of IgG elution to IgG isoelectric point (pI) are also described.  相似文献   

16.
17.
Capillary reversed-phase liquid chromatography (RPLC) was coupled on-line to competitive capillary electrophoresis immunoassay (CEIA) to improve concentration sensitivity of the competitive CEIA and to provide a means for detecting multiple species that cross-react with antibody. A competitive CEIA for glucagon was used for demonstration of this technique. Five-microliter samples were injected onto a 4-cm-long by 50-micron-i.d. RPLC column. Sample was desorbed by gradient elution, mixed on-line with fluorescently labeled glucagon and anti-glucagon, incubated in a continuous-flow reaction capillary, and analyzed by capillary electrophoresis with flow-gated injection and laser-induced fluorescence detection. Electrophoretic analysis of the reactor stream was performed every 1.5 s, allowing nearly continuous monitoring of the RPLC separation. Preconcentration achieved by RPLC allowed improvement in the detection limit from 760 to 20 pM. Addition of the RPLC column also allowed multiple cross-reactive species to be differentiated by first separating them chromatographically and then detecting them with the immunoassay. The technique was used to measure glucagon secretion from single islets of Langerhans and to differentiate cross-reactive forms of glucagon with one assay.  相似文献   

18.
Frontal affinity chromatography (FAC) interfaced with electrospray mass spectrometry (ESI-MS) has been reported as a potential method for screening of compound mixtures against immobilized target proteins. However, the interfacing of bioaffinity columns to ESI-MS requires that the eluent that passes through the protein-loaded column have a relatively low ionic strength to produce a stable spray. Such low ionic strength solvents can cause serious problems with protein stability and may also affect binding constants and lead to high nonspecific binding to the column. Herein, we report on the interfacing of bioaffinity columns to matrix-assisted laser desorption/ionization (MALDI) MS/MS as a new platform for FAC/MS studies. Capillary columns containing a monolithic silica material with entrapped dihydrofolate reductase were used for frontal affinity chromatography of small-molecule mixtures. The output from the column was combined with a second stream containing alpha-cyano-hydoxycinnamic acid in methanol and was deposited using a nebulizer-assisted electrospray method onto a conventional MALDI plate that moved relative to the column via a computer-controlled x-y stage, creating a semipermanent record of the FAC run. The use of MALDI MS/MS allowed for buffers with significantly higher ionic strength to be used for FAC studies, which reduced nonspecific binding of ionic compounds and allowed for better retention of protein activity over multiple runs. Following deposition, MALDI analysis required only a fraction of the chromatographic run time, and the deposited track could be rerun multiple times to optimize ionization parameters and allow signal averaging to improve the signal-to-noise ratio. Furthermore, high levels of potential inhibitors could be detected via MALDI with limited ion suppression effects. Both MALDI- and ESI-based analysis showed similar retention of inhibitors present in compound mixtures when using identical ionic strength conditions. The results show that FAC/MALDI-MS should provide advantages over FAC/ESI-MS for high-throughput screening of compound mixtures.  相似文献   

19.
Electrochemical multianalyte immunoassays using an array-based sensor   总被引:1,自引:0,他引:1  
Wilson MS  Nie W 《Analytical chemistry》2006,78(8):2507-2513
A novel amperometric biosensor for performing simultaneous electrochemical multianalyte immunoassays is described. The sensor consisted of eight iridium oxide sensing electrodes (0.78 mm(2) each), an iridium counter electrode, and a Ag/AgCl reference electrode patterned on a glass substrate. Four different capture antibodies were immobilized on the sensing electrodes via adsorption. Quantification of proteins was achieved using an ELISA in which the electrochemical oxidation of enzyme-generated hydroquinone was measured. The spatial separation of the electrodes enabled simultaneous electrochemical immunoassays for multiple proteins to be conducted in a single assay without amperometric cross-talk between the electrodes. The simultaneous detection of goat IgG, mouse IgG, human IgG, and chicken IgY was demonstrated. The detection limit was 3 ng/mL for all analytes. The sensor had excellent precision (1.9-8.2% interassay CV) and was comparable in performance to commercial single-analyte ELISAs. We anticipate that chip-based sensors, as described herein, will be suitable for the mass production of economical, miniaturized, multianalyte assay devices.  相似文献   

20.
Nanoparticles are increasingly used as labels for analytical purposes. In general, nanoparticles need to be functionalized with binding molecules (mostly antibodies or fragments thereof) and label substances using a multistep process that requires several manufacturing and purification steps. Here, we present a biological method of producing functionalized nanoparticles for effective use as label agents in a bioaffinity assay. The particles are based on the globular protein shell of human ferritin. A single chain Fv fragment (scFv) of an antibody is used as the binding moiety and Eu3+ ions as the label substance. Conventional chemical conjugation of the particle and antibody fragment is replaced with genetic fusion between the ferritin subunit and scFv genes. The material, for example, the fusion construct is produced in a single bacterial culture as insoluble forms that are easily purified by centrifugations. The subunits are solubilized and self-assembled, and label ions are introduced by shifting the pH. The functionality of these particles is demonstrated with a bioaffinity assay. This method of producing nanoparticles with inherent antigen binding activity presents several possibilities for the simple production of specific, functional nanoparticles. Production is fast, economical, and environmentally sustainable, making the system advantageous, particularly in applications requiring large quantities of specific nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号