首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Transforming Growth Factor-Beta (TGF-beta) is the general name for a family of naturally-occurring polypeptides which have multiple regulatory effects on cell proliferation and differentiation. Over the last decade it has become apparent that TGF-betas can be produced by most cell types and exert a wide range of effects in a context-dependent autocrine, paracrine or endocrine fashion via interactions with distinct receptors on the cell surface. This review summarizes current knowledge concerning the molecular and cellular biology of TGF-beta 3, the most recently described mammalian isoform, and focuses on those physiological actions which may lead to clinical applications, particularly in the indication areas of wound healing and chemoprotection.  相似文献   

2.
An immunohistochemical approach was utilized to evaluate the cellular distribution of transforming growth factor-beta 1 (TGF beta 1) and transforming growth factor beta 2 (TGF beta 2) at different stages of follicle development in the prepubertal mouse ovary under the following conditions: (i) after pregnant mare's serum gonadotrophin (PMSG) treatment; (ii) after PMSG and human chorionic gonadotrophin (HCG) treatment; (iii) after PMSG and HCG treatment plus mating. In the immature ovary, TGF beta 1 and TGF beta 2 immunoreactivities are localized in theca and granulosa cells and in oocytes. After PMSG treatment, TGF beta 1 and TGF beta 2 immunoreactivities are localized in granulosa cells; in addition, TGF beta 2 staining is noted in the matrix surrounding antral cells. Staining for both TGR beta 1 and TGF beta 2 drops in the theca but persists in the oocyte. PMSG plus HCG treatment results in a significant increase in TGF beta 1 and TGF beta 2 immunoreactivity in the theca and in the maintenance of TGF beta 1 staining in both basal granulosa cells and cumulus cells whereas TGF beta 2 immunoreactivity is essentially localized in the matrix surrounding cumulus cells. Staining for TGF beta 1 and TGF beta 2 persists in the oocyte. Following PMSG plus HCG treatment and mating, TGF beta 1 immunoreactivity is localized in the luteal cells of corpora lutea and TGF beta 2 shows a similar localization pattern. This study provides evidence that TGF beta 1 and TGF beta 2 peptides are expressed in specific cell types during induced follicular maturation in the mouse ovary.  相似文献   

3.
We recently demonstrated that transforming growth factor-beta (TGF-beta) stimulates phosphorylation of the type I inositol 1,4, 5-trisphosphate receptor (Sharma, K., Wang, L., Zhu, Y., Bokkala, S., and Joseph, S. (1997) J. Biol. Chem. 272, 14617-14623), possibly via protein kinase A (PKA) activation in murine mesangial cells. In the present study, we evaluated whether TGF-beta stimulates PKA activation. Utilizing a specific PKA kinase assay, we found that TGF-beta increases PKA activity by 3-fold within 15 min of TGF-beta1 treatment, and the enhanced kinase activity was completely reversed by the inhibitory peptide for PKA (PKI; 1 microM). In mesangial cells transfected with a PKI expression vector, enhanced PKA activity could not be demonstrated with TGF-beta1 treatment. TGF-beta1 was also found to stimulate translocation of the alpha-catalytic subunit of PKA to the nucleus by Western analysis of nuclear protein as well as by confocal microscopy. TGF-beta1-mediated phosphorylation of cAMP response element-binding protein was completely reversed by H-89 (3 microM), a specific inhibitor of PKA. Stimulation of fibronectin mRNA by TGF-beta1 was also attenuated in cells overexpressing PKI. We thus conclude that TGF-beta stimulates the PKA signaling pathway in mesangial cells and that PKA activation contributes to TGF-beta stimulation of cAMP response element-binding protein phosphorylation and fibronectin expression.  相似文献   

4.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth modulator that inhibits the proliferation of many epithelial cells while stimulating the proliferation of most fibroblasts. To examine the role of TGF-beta in mouse lung chemically induced tumorigenesis, expression of the TGF-beta 1, -beta 2, and -beta 3 proteins was examined in A/J mice treated with the carcinogen urethane to induce lung adenomas using immunohistochemical staining analysis. Immunostaining for the TGF-beta ligands was detected in the epithelium of the bronchioles of untreated A/J mice with immunostaining being more intense for TGF-beta 1 than for TGF-beta 2 and TGF-beta 3; immunostaining for each TGF-beta ligand was also detected in the bronchiolar epithelium of urethane-treated A/J mice at levels similar to untreated mice. Immunostaining for the TGF-beta ligands was also detected in adenomas by 2 months; staining for TGF-beta 1, -beta 2, and -beta 3 in adenomas was detected at levels comparable with bronchioles. Following treatment with urethane for 8 months, immunostaining for TGF-beta s 1, 2, and 3 in bronchioles persisted at levels comparable to that in normal bronchioles and also persisted in adenomas, with staining for the TGF-beta ligands being very prominent on the edge of the tumor. Expression of TGF-beta 1 mRNA was examined in urethane-treated mouse lung tissue using Northern blot hybridization; here, expression of TGF-beta 1 mRNA increased 2-fold in 3-month urethane-treated lung tissue and an additional 2.5-fold by 8 months following urethane administration. Expression of TGF-beta 1 mRNA was also examined in nontumorigenic and tumorigenic mouse lung cells; in these cells, expression of TGF-beta 1 mRNA was higher in the tumorigenic cells than in the nontumorigenic cell line. These data show that there is an increase in expression of TGF-beta 1 during tumorigenesis and suggest that TGF-beta may play an important role in mouse lung carcinogenesis induced by urethane.  相似文献   

5.
Like amphetamine, scopolamine produces locomotor stereotypy (repetitive routes of locomotion) in an open field. To determine whether locomotor stereotypy is a common behavioral effect of anticholingeric agents, several doses of the anticholinergic dexbenzetimide were tested for the ability to produce locomotor stereotypy; like scopolamine, dexbenzetimide produced locomotor stereotypy. To investigate a possible role of dopamine in anticholinergic-induced locomotor stereotypy, we tested the ability of the dopamine D1 antagonist SKF 83566 and the D2 antagonist sulpiride to block the locomotor stereotypy induced by scopolamine as well as dexbenzetimide. SKF 83566 blocked scopolamine- and dexbenzetimide-induced locomotor stereotypy; sulpiride did not reduce dexbenzetimide-induced locomotor stereotypy, but enhanced scopolamine-induced locomotor stereotypy. Hyperlocomotion was reduced by both dopamine antagonists. Results are interpreted in support of the notion that dopamine is the likely candidate mediating locomotor stereotypy.  相似文献   

6.
Three isoforms of Transforming Growth Factor-beta (TGF-beta 1, beta 2 and beta 3) exist in mammals. They play critical roles in growth regulation and development. Each isoform is encoded by a unique gene on different chromosomes. All three of these growth factors are secreted by most cell types, generally in a latent form, requiring activation before they can exert biological activity. This activation of latent TGF-beta, which may involve plasmin, thrombospondin and possibly acidic microenvironments, appears to be a crucial regulatory step in controlling their effects. The TGF-betas possess three major activities: they inhibit proliferation of most cells, but can stimulate the growth of some mesenchymal cells; they exert immunosuppressive effects; and they enhance the formation of extracellular matrix. Two types of membrane receptors (type I and type II) possessing a serine/threonine kinase activity within their cytoplasmic domains are involved in signal transduction. Inhibition of growth by the TGF-betas stems from a blockage of the cell cycle in late G1 phase. Among the molecular participants concerned in G1-arrest are the Retinoblastoma (Rb) protein and members of the Cyclin/Cyclin-dependent kinase/Cyclin dependent kinase inhibitor families. In the intact organism the TGF-betas are involved in wound repair processes and in starting inflammatory reactions and then in their resolution. The latter effects of the TGF-betas derive in part from their chemotactic attraction of inflammatory cells and of fibroblasts. From gene knockout and from overexpression studies it has been shown that precise regulation of each isoform is essential for survival, at least in the long term. Several clinical applications for certain isoforms have already shown their efficacy and they have been implicated in numerous other pathological situations.  相似文献   

7.
Immunohistochemical methods were used to show the presence and distribution of transforming growth factor-beta 1 and beta 2 during folliculogenesis in quail ovarian tissues. The results indicated that both transforming growth factor-beta subtypes are present. Immunolabelling for transforming growth factor-beta 1 demonstrated that prelampbrush oocytes are immunoreactive in the Balbiani complex, and developing and pre-ovulatory oocytes in the zona radiata. Immunolabelling was also associated with granulosa cells. The number of stained granulosa cells decreased during folliculogenesis. In the pre-ovulatory follicles, immunolabelling was found predominantly in the theca interna. Immunolabelling for transforming growth factor-beta 2 was associated with the zona radiata of developing and pre-ovulatory follicles, and with stromal interstitial cells. Moderate immunoreactivity was found in the Balbiani complex of prelampbrush oocytes. Weak immunolabelling was localized in the granulosa cells of prelampbrush follicles, and in a few cells of the theca interna of pre-ovulatory follicles. The immunolocalization of transforming growth factor-beta 1 and -beta 2 in the quail ovary supports their autocrine and/or paracrine role in avian ovarian processes.  相似文献   

8.
9.
10.
11.
12.
Melanoma invasion requires migration through the vascular barrier. An early event in this process is the adhesion of metastatic cells to the endothelium. To elucidate the role of TGF-beta in the regulation of this process, human melanoma SK-MEL24 cells were labelled with [5'-(3)H]-thymidine and co-cultured with bovine pulmonary artery endothelial-cell monolayers. Radioactivity was assumed to be proportional to the number of SK-MEL24 cells bound to the endothelium. A low number of melanoma cells adhered to endothelial cells in a time-related manner. Pretreatment for 24 hr with 0.001 to 10 ng/ml TGF-beta1 or TGF-beta2 of both cell types enhanced melanoma-endothelium adhesion in a dose-dependent manner. Both melanoma and endothelial cells expressed RI- and RII-type TGF-beta receptors. The effect of TGF-beta was abolished by co-incubation with the proteoglycan decorin. Conditioned media from melanoma-endothelium co-cultures contained latent TGF-beta and failed to affect cell-cell adhesion. However, activation of TGF-beta by heating the medium or reducing the pH, increased melanoma-endothelium adhesion to an extent similar to that of the TGF-beta administered to the cultures. Zimography demonstrated that both cell types expressed urokinase-type plasminogen activator (uPA). Addition of plasminogen to the co-cultures, which was likely to be activated to plasmin by uPA, resulted in activation of TGF-beta and parallel stimulation of melanoma-endothelium adhesion. In conclusion, TGF-beta may enhance adhesion of melanoma cells to the endothelium, playing a relevant autocrine/paracrine role in the progression of invasive melanoma.  相似文献   

13.
14.
Expression of transforming growth factor-betas 2, 3 and 4 (TGF-beta) in the developing chicken intestine and spleen was investigated using specific cDNA probes and antibodies for the different TGF-beta isoforms. Coordinate expression of the mRNAs for TGF-beta s 2, 3 and 4 was detected in the embryonic intestine by 8 days, with maximal expression of the mRNAs for TGF-beta s 2 and 4 occurring at 12 and 19 days, respectively, while expression of TGF-beta 3 mRNA remained constant during this time. While specific antibodies for TGF-beta s 2, 3 and 4 could detect only weak immunohistochemical staining of the intestinal epithelium in 4-, 12- and 16-day-old embryos, intense staining for TGF-beta s 2, 3 and 4 was detected in the tips of the intestinal villi of 19-day-old embryos. In the spleen, expression of the mRNAs for TGF-beta s 2 and 3 increased in the newly hatched chick compared with the embryo and then decreased in the adult to levels that were lower than in the embryo; expression of TGF-beta 4 mRNA increased progressively with developmental age, with expression in the adult spleen being significantly higher than in the embryonic and hatchling spleen. Immunohistochemical staining of spleens showed a selective increase in the level of reactive TGF-beta 4 with increasing developmental age, while staining for TGF-beta s 2 and 3 was constant during development. After infection of 1-month-old chickens with coccidian parasite, expression of TGF-beta 4 mRNAs increased 5-8-fold in intestinal intra-epithelial lymphocytes and 2.5-fold in spleen cells, while expression of the mRNAs for TGF-beta s 2 and 3 remained constant in these cells. The results of this study suggest that TGF-beta may play a role in development of the intestine and spleen in the chicken and that TGF-beta 4 in particular increases after infection of coccidia in the chicken.  相似文献   

15.
16.
We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes. Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA. The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a property similar to the eukaryotic type I topoisomerases. The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.  相似文献   

17.
BACKGROUND: High concentrations of active transforming growth factor-beta (TGF-beta) have been found in synovial fluids from arthritic joints. TGF-beta stimulates articular cartilage proteoglycan synthesis and suppresses proteoglycan degradation in vitro. In an earlier study, we found no effect on cartilage proteoglycan metabolism shortly after a single intra-articular injection of TGF-beta 1. In the present study, we used multiple intra-articular injections and a longer time-scale. EXPERIMENTAL DESIGN: TGF-beta 1 was injected into the murine knee joint to gain insight in the consequences of its overproduction in joint diseases. This was evaluated using histologic sections of the whole knee joint and measurements of articular cartilage proteoglycan synthesis and content. RESULTS: At 6 hours after a single TGF-beta 1 injection, recruitment of polymorphonuclear leukocytes (PMNs) was observed. After 24 hours, the amount of inflammatory cells had already decreased. Multiple TGF-beta 1 injections induced synovial hyperplasia and synovitis predominantly consisting of cells of the macrophage/monocyte lineage. Both single and multiple TGF-beta 1 injections induced strong and long-lasting stimulation of articular cartilage proteoglycan synthesis. This in vivo stimulation of proteoglycan synthesis was similar in cartilage of young (3 months) and old mice (18 months). Multiple TGF-beta 1 injections resulted in an increased GAG content in patellar cartilage. After triple TGF-beta 1 injections, impressive osteophyte formation was noted at specific sites. The size and the localization of osteophytes was identical in young and old mice. Interestingly, the localization of TGF-beta 1-induced osteophytes was very similar to that of osteophytes observed in experimental arthritis and osteoarthritis models, suggesting a role for endogenous TGF-beta in osteophyte formation during joint pathology. CONCLUSIONS: Our data indicate that TGF-beta 1 injection into a normal joint induces inflammation, synovial hyperplasia, osteophyte formation, and prolonged elevation of proteoglycan synthesis and content in articular cartilage.  相似文献   

18.
Stimulation of NMDA receptor increases NO-dependent cGMP synthesis. A significantly higher cGMP level was observed in hippocampus (about 8-fold increase) than in cerebral cortex (2.5-fold increase), as compared to basal value. The activity of NO synthase (NOS) and the basal level of cGMP in unstimulated slices were only slightly higher in hippocampus than in the cortex. About 60% of NOS total activity was found in the brain membrane fraction. The enzyme activity was not affected by glucocorticoids, even after 20 days of hydrocortisone treatment in dose of 40 mg/kg b.w. Brain ischemia induced by ligation of the both common carotid arteries in gerbils (Meriones unquiculatus) significantly increased NOS activity as well as cGMP and putrescine concentrations but decreased mono-ADP-ribosolation of proteins. Changes of NOS activity and cGMP concentration evoked by ischemia were decreased by specific inhibitor of the neuronal form of NOS (nNOS), 7-nitrodazole and the inhibitor of guanylate cyclase, LY 83,583 administered respectively in a dose of 25 mg/kg b.w. and 6 mg/kg b.w. 5 min. before ischemia. The inhibitor of nNOS, 7NI, did not change the concentration of putrescine during ischemia and reperfusion. Our results indicated that these inhibitors could protect the brain against excessive production of nitric oxide and biochemical processes dependent on it. In this way they may offer a new strategy in the therapy of brain ischemia.  相似文献   

19.
The last decade has been marked by tremendous advances in the biochemical and functional characterization of TGF-betas and their receptors in normal and transformed cells. TGF-betas have been shown to modulate proliferation, differentiation and motility of different cell types in a number of in vitro model systems and in some cases with some intriguing results. It is obvious that there is no simple pattern that explains the TGF-betas biological activity in vitro and their effects on cell behaviour need to be assessed in the context of an appropriate physiological cellular environment. Cell-cell and cell-matrix interactions, the differentiating status of the cell together with the functional activity of other soluble growth factors can influence how TGF-betas modulate cell behaviour. However, the overwhelming interest in this field shown by clinicians and basic scientists is rapidly increasing our understanding of how growth factors such as TGF-betas regulate the homeostasis of the GI mucosa and their role in gastrointestinal carcinogenesis.  相似文献   

20.
The specific activity of enkephalinase in endometrial tissue of nonpregnant ovulatory women is correlated in a highly significant, positive manner with the plasma level of progesterone. The specific activity and levels of enkephalinase messenger ribonucleic acid and immunoreactive protein also are increased in human endometrial stromal cells in culture by treatment with a synthetic progestin, medroxyprogesterone acetate (MPA), in a time- and dose-dependent manner. From an analysis of the temporal relationship between the specific activity and half-life of enkephalinase in endometrial tissue and the level of progesterone in plasma, it appeared highly likely that some mechanism, in addition to progesterone withdrawal, was operative to reduce enkephalinase activity in endometrium during the late luteal phase of the ovarian cycle before progesterone levels had declined below those known to be effective for progesterone action. In stromal cells previously (and concurrently) treated with MPA (10(-9) mol/L), the addition of transforming growth factor-beta 1 (TGF beta 1) or TGF beta 2 (1 ng/mL) to the medium caused a decrease in enkephalinase specific activity despite the continued presence of MPA. The half-life of enkephalinase (activity) in stromal cells treated with MPA plus TGF beta 1 was 2.8 days, which is similar to the computed half-life for enkephalinase in endometrial tissue during the mid- to late secretory phase of the endometrial cycle (2.5 days). Simultaneous treatment of endometrial stromal cells with MPA (10(-9) mol/L) and TGF beta 1 (1 ng/ mL) prevented the progestin-induced increase in enkephalinase specific activity and immunoreactive enkephalinase protein. Thus, TGF beta acts to oppose the progesterone-induced increase in enkephalinase expression in endometrial stromal cells, even in the continued presence of MPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号