首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of an emulsifier to stabilize the phenolic compounds added in the preparation of an enriched olive oil was evaluated. Two emulsifiers, lecithin and monoglyceride, were studied. The results showed lecithin to be the most convenient, due to the increase in the value of the oxidative stability of the phenol‐enriched oils in relation to the enrichments prepared with monoglycerides. After that, the shelf life of the prepared oils was evaluated during a period of 256 days of storage at 25°C in the dark. Oil quality parameters, total phenolic content, bitterness index and oxidative stability were studied during the storage period. Additionally, the phenolic composition and antioxidant capacity (by using the ORAC assay) were evaluated at the end of the storage. The phenolic enrichment of the oils allowed the shelf life of the oils to be extended compared with the control (virgin olive oil without phenol addition), delaying the appearance of peroxides and improving their oxidative stability. In addition, the higher content of phenolic compounds in the oils at all stages of storage is desirable in order to increase the intake of these beneficial compounds. Practical applications : The preparation of phenol‐enriched olive oils with a higher phenolic content than the commercial virgin olive oils is of special interest to increase the ingestion of these healthy compounds the daily intake of which is limited due to the high caloric value of olive oil. There are two key points in the development of this product: (i) the dispersion and stabilization of the phenol extract in the oil matrix and (ii) the stability of the phenols in the prepared oils to guarantee the phenol concentration during their shelf life. It is important to study the use of emulsifiers to determine if they allow an improvement in the dispersion of the phenolic extract, and their stabilization in the final product. In addition, the emulsifiers could mask the bitter taste of the enriched oils, which is desirable to increase consumer acceptance of the enriched oil.  相似文献   

2.
A large number of virgin olive oil samples obtained from different areas in Greece were analyzed for various quality parameters. The work focuses on the colorimetric determination of total phenols with the Folin‐Ciocalteu reagent and its importance in predicting shelf life of virgin olive oil. The results indicate a good correlation of total polar phenol content with the stability of the oil. Colorimetric determination of ortho‐diphenol content does not seem to be a better means for predicting virgin olive oil stability. RP‐HPLC quantification of hydroxytyrosol and tyrosol in their free form gives poor results in the case of freshly extracted oils. It is concluded that until an easy‐to‐manage HPLC method will be available, which will quantify accurately both free and bound forms of hydroxytyrosol and other phenolics, the colorimetric method for the determination of total polar phenols remains a good practical means to evaluate the stability of virgin olive oil.  相似文献   

3.
In this paper we evaluate the stability, purity and regulated quality composition of fatty acids and sterols (both physico‐chemical and sensory) of commercial Argentinean virgin olive oils in order to evaluate their acceptance on the world market. For this purpose, samples of the best known and most widely distributed oils in supermarkets located in Buenos Aires (Argentina) were acquired. After thoroughly analysing these samples, only 20% were considered to have an acceptable quality. However, some were excluded because of their high campesterol content, which could be an intrinsic characteristic of these oils. The most useful analytical parameter used to confirm authenticity was ECN‐42 R – ECN‐42 T, followed by wax content and 3.5 stigmastadienes. Only 24% of the extra‐virgin olive oil samples were classified as ‘extra‐virgin’ from the regulated quality viewpoint. The low oleic and high linolenic acid contents of the Argentinean virgin olive oils stand out when compared with European virgin olive oils. The oxidative stability values may be considered very low, indeed even lower than those obtained in Spanish virgin olive oils.  相似文献   

4.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   

5.
The effect of red pepper supercritical fluid extracts (SFE) on the oxidative stability of extra‐virgin olive oil was evaluated using accelerated stability tests [Rancimat and differential scanning calorimetry (DSC) methods] and by measuring the changes in the levels of polyunsaturated fatty acid primary and secondary oxidation products during storage under ambient conditions. SFE were produced according to a central composite rotatable design, at a constant temperature (40 °C), different pressures (15–23 MPa) and superficial velocities (0.04–0.08 cm/s). The results showed that the red pepper extracts produced at low extraction pressure and superficial velocity (e.g. 16.2 MPa and 0.046 cm/s) containing low/intermediate capsaicinoid levels did not affect olive oil stability. The extracts produced at higher pressure showed a slight pro‐oxidant activity. The K232 and K270 values always fell within the limit set by the European legislation for the quality characteristics of olive oil containing no additives. Evaluation of oxidative stability using DSC was found to be a useful methodology, which demands smaller oil samples and shorter times in comparison with the methodology using the Rancimat apparatus. Red pepper SFE obtained at low extraction pressures can be used in order to produce stable flavoured olive oils.  相似文献   

6.
The effect of filtration and dehydration on the stability and quality of virgin olive oil during storage at room temperature (25 °C) and under accelerated conditions (40 °C) was studied. Different types of monovarietal olive oil, namely unfiltered (UF), filtered (F) and filtered‐dehydrated (FD), were obtained from Arbequina, Colombaia, Cornicabra, Picual and Taggiasca cultivars. Results showed that filtration and dehydration decreased the rate of hydrolysis of the triacylglycerol matrix, especially at the higher temperature and in oils with a higher initial free acidity (e.g. free acidity of 0.82% and 0.63% in UF and FD Colombaia samples, respectively, after 8 months of storage), and delayed the appearance of rancid defects (e.g. UF and FD Arbequina samples lost extra‐virgin grade after 10 and 12 months of storage, respectively). The formation of simple phenols due to the hydrolysis rate of their secoiridoid derivatives was also greater in unfiltered olive oils (e.g. 174 μmol/kg and 137 μmol/kg in UF and FD Picual samples, respectively, after 8 months of storage). Thus, filtration and especially dehydration could help to prolong the shelf life of high‐quality and less stable olive oils like those obtained from the Arbequina and Colombaia varieties.  相似文献   

7.
Accelerated oxidation tests, such as the determination of the induction period, increase the lipid oxidation rate by exposing a food to elevated temperatures, in the presence of excess quantities of air or oxygen. In addition to the well‐founded oxidative stability index (OSI) method, an innovative and promising technique is the oxidation test (OXITEST) reactor. A new analytical method was developed with OXITEST to oxidize vegetable oils. At a preliminary stage of the investigation, the induction periods of sunflower and extra‐virgin olive oil obtained by the OXITEST reactor were plotted against temperature, on the basis of the Arrhenius law; the activation energy and the frequency factor of lipid oxidation were calculated and resulted in 98.61 kJ/mol and 2.33×1010 s–1, respectively, for sunflower oil and 106.48 kJ/mol and 6.27×1010 s–1, respectively for extra‐virgin olive oil. The new oxidative technique was employed to determine the induction periods of vegetable oils; the results obtained were well correlated with those achieved with OSI technology, with a Pearson correlation coefficient r = 0.9785 (p <0.05) for oilseeds and palm oil and r = 0.9501 (p <0.05) for extra‐virgin olive oils.  相似文献   

8.
The induction period (IP), determined using accelerated methods such as the Rancimat test, is a parameter that has been used to predict the shelf life of virgin olive oil. The oxygen radical absorbance capacity (ORAC) has recently been proposed as a quality index of virgin olive oil because it measures the efficiency of phenolic compounds in the protection against peroxyl radicals. This study aims to investigate relationships between the ORAC and IP values and proposes ORAC as a new parameter of virgin olive oil stability. The concentrations of phenolics, o-diphenols, tocopherol, β-carotene, lutein, and ORAC and IP values were determined in 33 virgin olive oils. Regression analyses showed that both ORAC and IP values correlate with total phenols and o-diphenols with highly significant indices, whereas the correlations of both ORAC and IP with tocopherols, β-carotene, and lutein were not significant. The ORAC values correlate with the IP values with low but significant indices (R=0.42; P<0.02). The results confirm the key role of phenolic compounds in accounting for the shelf life of virgin olive oil and suggest that the ORAC parameter may be used as a new index of quality and stability.  相似文献   

9.
The influence of the olive oil processing steps [paste malaxation (PM), decanter centrifugation (DC), and vertical centrifugation (VC)] on the dissolved oxygen (DO) concentration in virgin olive oil (VOO) right after production was investigated at industrial plant scale for two successive years. The influence of this parameter on quality decay during shelf life, assessed by peroxide value (PV) analysis, was also monitored. The VC step showed the higher oxygenation effect (50% increase in comparison to the control), and a good linear regression (r2 = 0.83) was found between the initial DO concentration and the PV after 2 days. An 18‐months shelf life test, performed on VOO sampled before and after the VC, indicated the slowest decay kinetics in the oils with the lower initial DO concentration, i.e. the non‐centrifuged oils.  相似文献   

10.
Effects of free fatty acids on oxidative stability of vegetable oil   总被引:1,自引:0,他引:1  
The effect of free fatty acid (FFA) content on the susceptibility to thermooxidative degeneration of vegetable oils was determined by Rancimat analysis. A prooxidant effect of FFA was observed in all filtered oils, independently of lipidic substrate and of its state of hydrolytic and oxidative alteration. The intensity of this effect was related to FFA concentration, but regression analysis of the experimental data did not show a general correlation law between FFA concentration and induction time (I t). Different results were obtained for freshly processed virgin olive oils, characterized by postpressing natural suspension-dispersion: opposite behavior was observed of FFA content as regards oxidative stability, depending on the presence of suspended-dispersed material. This fact is of interest because the dispersed particles play a double stabilizing effect on both oxidative and hydrolytic degradation. These results showed that avoidance of oil filtration is highly desirable to extend olive oil’s shelf life.  相似文献   

11.
During domestic usage, olive oil bottle manipulation may lead to a quality decrease due to agitation and oxygenation. Therefore, assessing the domestic consumption time period during which the initial quality grade is retained may allow including this information as a recommendation, ensuring olive oil consumers’ satisfaction. Temporal changes of physicochemical, chemical, and sensory parameters of extra‐virgin olive oils (EVOO) were monitored during 1‐month simulated house‐use conditions. It was observed that K232 (R‐Pearson ≥+0.81) and ΔK increased resulting in a significant olive oil quality decrease from EVOO (during the initial 21 days of simulated usage) to lampante olive oil (after 28 days of simulated usage) as well as the appearance of rancid sensation. As lampante olive oils cannot be commercialized, it is pertinent to establish olive oil shelf life under usual home‐use conditions. Principal component analysis allowed grouping the olive oils according to home‐use time period and how bottles are stored after their first opening, showing that the overall olive oil physicochemical and sensory characteristics changed with the domestic‐use time period. Finally, a potentiometric electronic tongue coupled with linear discriminant analysis was used to discriminate olive oils according to the domestic‐use time period (leave‐one‐out cross‐validation sensitivities ≥95%). Thus, this device could be used to indirectly assess the quality of the remaining bottled olive oil by establishing for how long an olive oil bottle has been used under domestic conditions.  相似文献   

12.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

13.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

14.
Determining the shelf‐life of edible fats and oils under normal storage conditions is a tedious and time‐consuming task. Accelerated tests are therefore frequently used to determine the stability of the products at ambient conditions. However, the mechanisms of lipid oxidation at accelerated conditions may be different from those under normal storage conditions, leading to errors in the shelf‐life predictions. This article describes an automated accelerated method, namely Rancimat, for shelf‐life prediction of edible fats and oils under normal storage conditions, and the effect of its operational parameters on these predictions.  相似文献   

15.
Phenolic compounds are of fundamental importance to the shelf life of virgin olive oils because of their antioxidative properties. In this paper, the evolution of simple and complex olive oil phenols during 18 mon of storage is studied by high-performance liquid chromatography (HPLC) analysis. The olive oils under examination were from various olive cultivars, harvested in two sectors in the same region at different stages of ripeness. The findings indicate that it is not the variety but rather the ripeness of the olives and the soil and climate that influence the phenol composition of virgin olive oil. In addition, a positive correlation was found between the age of the oils and the tyrosol to total phenols ratio. Lastly, gas chromatography-mass spectrometry analysis confirmed that the unidentified peaks detected by HPLC were of a phenolic nature.  相似文献   

16.
The aim of this work was to ascertain the amount of oxidized triglycerides and triglyceride dimers in virgin and “lampante” olive oils: to this effect, 38 samples were collected from different oil-mills. No data on the above compound classes in ?lampante”? olive oils have ever appeared in literature up to now. However, fat autoxidation is known to imply polymerization reactions; so, low amounts of oligopolymers may be formed in oil at a given state of oxidation. This aspect also applies to virgin olive oils because the very few data reported in literature are mainly related to extra virgin olive oils which are classified as high quality oils. Column chromatography and high-performance size exclusion chromatography were used for oil analysis in this work. Triglyceride dimers were either absent or present in traces in virgin olive oils, but were found in ?lampante”? oils with a mean value of 0.07%. Oxidized triglyceride percentages in ?lampante”? oils were more than twice as high as those present in virgin oils. The data obtained suggest the following consideration: the presence of dimers in vegetable oils reveals a rather high oxidation level and is confirmed by the higher oxidized triglyceride values. This is a reliable index of oxidative degradation in oil.  相似文献   

17.
The antioxidant properties of some single components and the total antioxidant activity of extra‐virgin olive oil have been evaluated by the oxygen radical absorbance capacity (ORAC) method. The total ORAC of the extra‐virgin olive oil was found to be positively correlated with the concentration of total polyphenols, which are important to the shelf life of the product. Among the single phenolic compounds studied, gallic acid showed a higher ORAC than caffeic acid and oleuropein, while among the derivates of oleuropein, hydroxytyrosol was found to be the most active compound among all the phenols studied. The total ORAC of commercial olive oils differed according to the concentration of total polyphenols. The total ORAC of extra‐virgin olive oil was constant during 1 year of storage in rational conditions, whereas it worsened dramatically in olive oil damaged by the lipase‐producing yeast Williopsis californica or by lipase from Pseudomonas spp. The study accomplished on the oily fraction of the fruits before harvesting demonstrated that the total ORAC of the oil of under‐ripe green olives is higher compared to that shown by mature fruits; therefore, through the choice of the harvesting time, it is possible to define also the future content of polyphenols of the oil. The total ORAC test, together with other analyses, can be considered as a qualitative parameter that can contribute to the expression of technological and health virtues of extra‐virgin olive oil.  相似文献   

18.
Oxidation is the primary cause of virgin olive oil quality deterioration. This paper presents a correlation between oxidative stability, as determined by the Rancimat method, and some chemical components involved in the oxidation process of a set of 74 Cornicabra virgin olive oils obtained from three successive crop seasons (94/95 to 96/97). Results showed a clear influence of total polyphenols on virgin olive oil stability, with linear regression coefficients which were similar for the three seasons studied, and a much lower contribution of α-tocopherol and unsaturated fatty acids, mainly linoleic acid. A significant effect dependent on the crop season was also observed.  相似文献   

19.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

20.
An experimental investigation was carried out to evaluate the quality of virgin olive oils obtained when either a hammer‐crusher or a disk‐crusher were used for the olive paste preparation; the effect of the temperature rise caused by rapid olive crushing was also assessed. Oxidative degradation in the oils obtained from hammer‐crushed olives was significantly higher than in those obtained from disk‐crushed olives as shown by the levels of oxidised triacylglycerols and the results of the oven test. A significant inverse correlation (p <0.001) was found between the Rancimat induction time values and the amounts of oxidised triacylglycerols as determined by the high‐performance size exclusion chromatography analysis of polar compounds. These findings suggested that polar compound analyses, just as routine analyses, may be used as a suitable analytical tool to effectively evaluate the quality of virgin olive oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号