首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput miniature cylindrical ion trap array mass spectrometer   总被引:3,自引:0,他引:3  
A fully multiplexed cylindrical ion trap (CIT) array mass spectrometer with four parallel ion source/mass analyzer/detector channels has been built to allow simultaneous high-throughput analysis of multiple samples. A multielement external chemical ionization/electron ionization source was coupled to a parallel array of CITs each of equal size (internal radius 2.5 mm), and the signal was recorded using an array of four miniature (2-mm inner diameter) electron multipliers. Using external electron ionization, the spectra of four separate samples were recorded simultaneously in real time using a four-channel preamplifier system and a data acquisition program written using LabVIEW software. These experiments mark the first demonstration of externally generated ions being successfully trapped in a miniature CIT mass analyzer. The instrument currently provides mass/charge range of approximately m/z 50-500. Average peak width is m/z 0.3, corresponding to a resolution of 1000 at m/z 300. The four-channel mass spectrometer is housed in a single vacuum manifold and operated with a single set of control electronics. The modular design of this instrument allows scale-up to many more channels of analysis for future applications in the areas of industrial process monitoring and combinatorial analysis and in the fields of proteomics and metabolomics.  相似文献   

2.
A rectilinear ion trap (RIT) mass analyzer was incorporated into a mass spectrometer fitted with an electrospray ionization source and an atmospheric pressure interface. The RIT mass spectrometer, which was assembled in two different configurations, was used for the study of biological compounds, for which performance data are given. A variety of techniques, including the use of a balanced rf, elevated background gas pressure, automatic gain control, and resonance ejection waveforms with dynamically adjusted amplitude, were applied to enhance performance. The capabilities of the instrument were characterized using proteins, peptides, and pharmaceutical drugs. Unit resolution and an accuracy of better than m/z 0.2 was achieved for mass-to-charge (m/z) ratios up to 2000 Th at a scan rate of approximately 3000 amu/(charge.s) while reduced scan rates gave greater resolution and peak widths of less than m/z 0.5 over the same range. The mass discrimination in trapping externally generated ions was characterized over the range m/z 190-2000 and an optimized low mass cutoff value of m/z 120-140 was found to give equal trapping efficiencies over the entire range. The radial detection efficiency was measured as a function of m/z ratio and found to rise from 35% at low m/z values to more than 90% for ions of m/z 1800. The way in which the ion trapping capacity depends on the dc trapping potential was investigated by measuring the mass shift due to space charge effects, and it was shown that low trapping potentials minimize space charge effects by increasing the useful volume of the device. The collision-induced dissociation (CID) capabilities of the RIT instrument were evaluated by measuring isolation efficiency as a function of mass resolution as well as measuring peptide CID efficiencies. Overall CID efficiencies of more than 60% were easily reached, while isolation of an ion with unit resolution at m/z 524 was achieved with high rejection (>95%) of the adjacent ions. The overall analytical capabilities of the ESI-RIT instrument were demonstrated with the analysis of a mixture of pharmaceutical compounds using multiple-stage mass spectrometry.  相似文献   

3.
A new ion soft landing instrument has been built for the controlled deposition of mass selected polyatomic ions. The instrument has been operated with an electrospray ionization source; its major components are an electrodynamic ion funnel to reduce ion loss, a 90-degree bent square quadrupole that prevents deposition of fast neutral molecules onto the landing surface, and a novel rectilinear ion trap (RIT) mass analyzer. The ion trap is elongated (inner dimensions: 8 mm x 10 mm x 10 cm). Three methods of mass analysis have been implemented. (i) A conventional mass-selective instability scan with radial resonance ejection can provide a complete mass spectrum. (ii) The RIT can also be operated as a continuous rf/dc mass filter for isolation and subsequent soft landing of ions of the desired m/ z value. (iii) The 90-degree bent square quadrupole can also be used as a continuous rf/dc mass filter. The mass resolution (50% definition) of the RIT in the trapping mode (radial ion ejection) is approximately 550. Ions from various test mixtures have been mass selected and collected on fluorinated self-assembled monolayers on gold substrates, as verified by analysis of the surface rinses. Desorption electrospray ionization (DESI) has been used to confirm intact deposition of [Val (5)]-Angiotensin I on a surface. Nonmass selective currents up to 1.1 nA and mass-selected currents of up to 500 pA have been collected at the landing surface using continuous rf/dc filtering with the RIT. A quantitative analysis of rinsed surfaces showed that the overall solution-to-solution soft landing yields are between 0.2 and 0.4%. Similar experiments were performed with rf/dc isolation of both arginine and lysine from a mixture using the bent square quadrupole in the rf/dc mode. The unconventional continuous mass selection methods maximize soft landing yields, while still allowing the simple acquisition of full mass spectra.  相似文献   

4.
Here we describe a new quadrupole Fourier transform ion cyclotron resonance hybrid mass spectrometer equipped with an intermediate-pressure MALDI ion source and demonstrate its suitability for "bottom-up" proteomics. The integration of a high-speed MALDI sample stage, a quadrupole analyzer, and a FT-ICR mass spectrometer together with a novel software user interface allows this instrument to perform high-throughput proteomics experiments. A set of linearly encoded stages allows sub-second positioning of any location on a microtiter-sized target with up to 1536 samples with micrometer precision in the source focus of the ion optics. Such precise control enables internal calibration for high mass accuracy MS and MS/MS spectra using separate calibrant and analyte regions on the target plate, avoiding ion suppression effects that would result from the spiking of calibrants into the sample. An elongated open cylindrical analyzer cell with trap plates allows trapping of ions from 1000 to 5000 m/z without notable mass discrimination. The instrument is highly sensitive, detecting less than 50 amol of angiotensin II and neurotensin in a microLC MALDI MS run under standard experimental conditions. The automated tandem MS of a reversed-phase separated bovine serum albumin digest demonstrated a successful identification for 27 peptides covering 45% of the sequence. An automated tandem MS experiment of a reversed-phase separated yeast cytosolic protein digest resulted in 226 identified peptides corresponding to 111 different proteins from 799 MS/MS attempts. The benefits of accurate mass measurements for data validation for such experiments are discussed.  相似文献   

5.
This paper describes the use of two separate electrosprays for introducing sample and reference for accurate mass liquid chromatography/mass spectrometry (LC/MS) on an orthogonal acceleration time-of-flight mass analyzer. This is carried out using an adaptation of the multiplexed electrospray ion source in which only two of the sprays are utilized. Results are shown for the positive ion detection of trace-level components in complex matrixes and good mass accuracies are obtained, even for very low level components. An example of accurate mass measurements obtained using negative ion LC/MS is also shown. To obtain additional structural information, an example of cone voltage fragmentation is included and shows that good mass accuracy can be obtained for both precursor and fragment ions.  相似文献   

6.
The analytical performance of an atmospheric pressure sampling, multiple-channel, high-throughput mass spectrometer was investigated using samples of a variety of types. The instrument, based on an array of cylindrical ion traps, was built with four independent channels and here is operated using two fully multiplexed channels (sources, ion optics, ion traps, detectors) capable of analyzing different samples simultaneously. Both channels of the instrument were incorporated within the same vacuum system and operated using a common set of control electronics. A multichannel electrospray ionization source was assembled and used to introduce samples including solutions of organic compounds, peptides, and proteins simultaneously into the instrument in a high-throughput fashion. Cross-talk between the channels of the instrument occurred in the detection system and could be minimized to 1-2% using shielding between detector channels. In this initial implementation of the instrumentation, an upper mass/charge limit of approximately 1300 Th was observed (+13 charge state of myoglobin) and unit mass/charge resolution was achieved to approximately 800 Th. The rather limited dynamic range (2-3 orders of magnitude for low-concentration analytes) is due to cross-talk contributions from more concentrated species introduced into a different channel. Analysis of mixtures of alkylamines and peptides is demonstrated, but analysis of mixtures with a wide spread in mass/charge ratios was not possible due to mass discrimination in the ion optics. Further refinement of the vacuum system and ion optics will allow the addition of more channels of parallel mass analysis and facilitate applications in fields such as proteomics and metabolomics.  相似文献   

7.
Pan C  Hettich RL 《Analytical chemistry》2005,77(10):3072-3082
In Fourier transform ion cyclotron resonance mass spectrometry, collisionally activated dissociation (CAD) typically is accomplished within the analyzer ion cell. An alternative approach of multipole-storage-assisted dissociation (MSAD) has previously been demonstrated by inducing collisional fragmentation in the external multipole that is usually employed for ion accumulation. To explore the utility of MSAD for interrogating intact proteins and simple protein mixtures in a multiplexed manner, we have investigated the means of controlling the collisional energy and the fragmentation pattern for this experimental approach. With protein samples in the low micromolar concentration range, the two major experimental parameters affecting MSAD in the hexapole region were found to be the dc offset voltage and accumulation time. While low-energy MSAD of intact proteins yields fragment ions similar to sustained off resonance irradiation collision-activated dissociation (SORI-CAD), high-energy MSAD induces sequential fragmentation for intact proteins to yield a rich variety of singly charged ions in the m/z 600-1200 Da region. Each of the seven proteins (Mr range of 8.5-116 kDa) examined in this study exhibited their own characteristic MSAD fragmentation pattern, which could be used as a signature of the presence of a given protein, even in a mixture. In addition, any MSAD fragment can be isolated and dissociated further by SORI-CAD in an MS3-type experiment inside the FTICR analyzer cell. This presents a novel way to interrogate the identities of these fragment ions as well as obtain amino acid sequence tag information that can be used to identify proteins from mixtures.  相似文献   

8.
Atmospheric pressure ionization in a miniature mass spectrometer   总被引:2,自引:0,他引:2  
A miniature cylindrical ion trap mass spectrometer featuring an atmospheric pressure interface allowing atmospheric pressure chemical ionization and electrospray ionization is described together with its analytical performance characteristics. The vacuum system, ion optics, mass analyzer, control electronics system, and detection system have all been designed and built in-house. The design is based upon a three-stage, differentially pumped vacuum system with the instrument capable of being interfaced to many types of atmospheric pressure ionization sources. Ions are transferred through home-built ion optics, and instrument control is achieved through custom-designed electronics and LabView control software. Corona discharge ionization and electrospray ionization sources are implemented and used to allow the analysis of both gaseous- and solution-phase samples during the characterization of the instrument. An upper mass/charge limit of approximately 450 Th with unit resolution was achieved using a 2.5-mm-internal radius cylindrical ion trap as the mass analyzer. The specificity of the instrument can be increased by employing the MS/MS capabilities of the ion trap and has been demonstrated for nitrobenzene. Limits of detection for the trace analysis in air of the chemical warfare agent simulant methyl salicylate (1.24 ppb) and for nitrobenzene (629 pptr) are achieved. The dynamic range of the instrument is currently limited to approximately 2 orders of magnitude by saturation of the detection electronics. Isolation and collision-induced dissociation efficiencies in MS/MS experiments both greater than 50% are reported. Electrospray/nanospray data are presented on solutions including 100 microM (D,L)-arginine, 10 microM (-)-ephedrine, and 10 microM lomefloxacin.  相似文献   

9.
A selective and sensitive approach, called extraction of product ion (XoPI) method, was developed for the detection of l-glutathione (GSH)-trapped reactive metabolites employing an Orbitrap high resolution mass spectrometer. Fragmentation of GSH conjugates in the negative ion mode leads to a product ion, deprotonated γ-glutamyl-dehydroalanyl-glycine (m/z 272.0888). As a means of utilizing this property, negative ion high resolution MS data were collected from in vitro incubations by monitoring ions from m/z 269.5 to 274.5 under in-source collision-induced dissociation. Extraction of product ions at m/z 272.0888 ± 5 ppm from this data resulted in a chromatogram exhibiting deprotonated γ-glutamyl-dehydroalanyl-glycine as the major peaks with no or very few interferences. Therefore, peaks in this extracted product ion chromatogram potentially came from GSH-trapped reactive metabolites. The GSH conjugate parent ions were then confirmed in the corresponding full scan MS data, and their structures were identified from their MS(2) fragmentation patterns. The effectiveness of the approach was assessed with four model compounds, amodiaquine, clozapine, diclofenac, and fipexide, all well-known to form GSH-trapped reactive metabolites, following incubation in human liver microsomes supplemented with β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) and GSH. The results from XoPI method were compared to two other commonly employed liquid chromatography-mass spectrometry (LC-MS) methods: precursor ion scan method and mass defect filter method. Overall, the XoPI method was more selective and sensitive in detecting the GSH conjugates. Many GSH conjugates previously not reported were detected and characterized in this study.  相似文献   

10.
This article describes the strange behavior of the widely used herbicide metolachlor under chemical ionization conditions in a hybrid source ion trap mass spectrometer in gas chromatography/mass spectrometry (GC/MS) coupling. With the use of ammonia as the reagent gas, metolachlor provides a chlorinated ion at m/z 295/297, almost as abundant as the protonated molecule at m/z 284/286, which cannot be isolated to perform tandem mass spectrometry (MS(n)) experiments. Curiously, this ion at m/z = M + 12 is not observed for the herbicides acetochlor and alachlor, which present very similar chemical structures. The chemical structure of the m/z 295/297 ions and the explanation of the observed phenomenon based on the metastable behavior of these ions were elucidated on the basis of experiments including isotopic labeling and modifications of the operating conditions of the ion trap mass spectrometer. This work allows one to give new recommendations for an optimized use of hybrid source ion trap mass spectrometers.  相似文献   

11.
A new atmospheric pressure ionization mass spectrometer (API-MS) interface has been developed to allow the control of ion transmission through the first vacuum stage of the mass spectrometer. The described interface uses a dual-heated capillary and a dual-inlet ion funnel design. Two electrosprays, aligned with the dual-capillary inlet, are used to introduce ions from different solutions independently into the MS. The initial design was specifically aimed at developing a method for the controlled introduction of calibrant ions in highly accurate mass measurements using Fourier transform ion cyclotron resonance mass spectrometer (FTICR). The dual-channel ion funnel has different inlet diameters that are aligned with the dual capillaries. The large diameter main channel of the ion funnel is used for analyte introduction to provide optimum ion transmission. The second, smaller diameter channel inlet includes a jet disrupter in the ion funnel to modulate the ion transmission through the channel. The two inlet channels converge into a single-channel ion funnel where ions from both channels are mixed, focused, and transmitted to the mass analyzer. Both theoretical simulations and experimental results show that the transmission of different m/z species in the small diameter channel of the ion funnel can be effectively modulated by varying the bias voltage on the jet disrupter. Both static and dynamic modulations of ion transmission are demonstrated experimentally by applying either a constant DC or a square waveform voltage to the jet disrupter. High ion transmission efficiency, similar to the standard single-channel ion funnel, is maintained in the main analyte channel inlet of the ion funnel over a broad m/z range with negligible "cross talk" between the two ion funnel inlet channels. Several possible applications of the new interface (e.g., for high-accuracy MS analysis of complex biological samples) are described.  相似文献   

12.
Desorption/ionization on silicon (DIOS) tandem time-of-flight (TOF/TOF) mass spectrometry (MS) provides high accuracy and significant fragmentation information, particularly in the characterization of biomolecules. DIOS TOF/TOF offers a high-throughput surface-based ionization platform as well as complete fragmentation through high collision energies. The absence of matrix interference in DIOS allows for the MS and MS/MS analysis of small molecules well below m/z 300. In addition, sample preparation is minimal, and the DIOS chips can be stored and reanalyzed for fragmentation information or accurate mass measurements. The combined benefits of robustness, minimal sample preparation, good sensitivity, high throughput, and sequencing capability make DIOS TOF/TOF a powerful tool for small molecule characterization and protein identification.  相似文献   

13.
Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g., from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms with regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than approximately 1% with continuous ion sources (e.g., ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a approximately 10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.  相似文献   

14.
Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS) offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse space-charge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection of multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 x 10(5) charges. SIM-stitching and wide-scan range (WSR; Thermo Electron) were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 10(5) and 5 x 10(5), respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high-throughput metabolomics.  相似文献   

15.
Nanometer-sized spherule soot precursor particles have been collected by thermophoretic sampling from the interior of a laminar diffusion flame and mass analyzed by laser microprobe mass spectrometry. Mass spectra of the precursor particles formed in an ethene diffusion flame have indicated the presence of polycyclic aromatic hydrocarbons (PAHs) in the m/z range of 202-300 and higher mass peaks extending out to m/z 472. The mass resolution of the time-of-flight mass spectrometer used did not provide conclusive identification of PAHs because of ambiguities in assignment for the relative amounts of carbon and hydrogen (C(x)H(y)) for each PAH peak and the possibilities of spectral interferences. To determine the chemical formula that can be assigned to each molecular ion peak, an isotopically pure deuterated ethene (C(2)D(4)) fuel was burned in place of normal ethene (C(2)H(4)) in the diffusion flame. For the normal ethene fuel, mass peaks tentatively identified as C(16)H(10) to C(38)H(16) were obtained. Accordingly, deuterated PAH peaks ranging from C(16)D(10) to C(38)D(16) were found when C(2)D(4) was burned. These m/z values correspond to molecular ion, M?(+), peaks for an array of PAH compounds. The deuterated PAH mass peaks (C(x)D(y)) were entirely consistent with a mass shift of y mass units with respect to the normal PAH mass peaks. The carbonaceous particle aggregates collected from the upper flame region have mass peaks characteristic of C(x)(+) and C(x)H(+), while the deuterated soot has C(x)(+) and C(x)D(+). The deuterated ethene experiment has verified the identities of x and y in the PAH (C(x)H(y)) compounds present in the precursor particle samples. No prior experiment using pure deuterium-based fuel as a combustion diagnostic to form aerosol-containing deuterated PAH compounds has been reported.  相似文献   

16.
Wen B  Ma L  Nelson SD  Zhu M 《Analytical chemistry》2008,80(5):1788-1799
A highly sensitive and efficient method has been developed for detection and characterization of glutathione (gamma-glutamyl-cysteinylglycine, GSH)-trapped reactive metabolites using a negative precursor ion (PI) as the survey scan to trigger the acquisition of positive enhanced product ion (EPI) spectra on a triple quadrupole linear ion trap mass spectrometer. The negative precursor ion scan step was carried out monitoring the anion at m/z 272, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine originating from the glutathionyl moiety. Because of the uniqueness and abundance of the anion at m/z 272, this single survey scan exhibited broad utility in the detection of unknown GSH conjugates. Further structural characterization was achieved by analyzing positive MS2 spectra that featured rich fragments without mass cutoff and were acquired in the same liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The effectiveness and reliability of this approach was evaluated using a number of model compounds in human liver microsomal incubations, including acetaminophen, clozapine, diclofenac, imipramine, meclofenamic acid, and ticlopidine. As a result, the PI-EPI approach revealed the presence of known adducts and, in many instances, identified additional conjugates that had not been reported previously. In comparison to the widely used neutral loss (NL) scanning analysis, this approach provided superior sensitivity and selectivity for different types of GSH conjugates. More importantly, the PI-EPI approach is suitable for high-throughput screening of reactive metabolites in the drug discovery process.  相似文献   

17.
The first coupling of atmospheric pressure ionization methods, electrospray ionization (ESI) and desorption electrospray ionization (DESI), to a miniature hand-held mass spectrometer is reported. The instrument employs a rectilinear ion trap (RIT) mass analyzer and is battery-operated, hand-portable, and rugged (total system: 10 kg, 0.014 m(3), 75 W power consumption). The mass spectrometer was fitted with an atmospheric inlet, consisting of a 10 cm x 127 microm inner diameter stainless steel capillary tube which was used to introduce gas into the vacuum chamber at 13 mL/min. The operating pressure was 15 mTorr. Ions, generated by the atmospheric pressure ion source, were directed by the inlet along the axis of the ion trap, entering through an aperture in the dc-biased end plate, which was also operated as an ion gate. ESI and DESI sources were used to generate ions; ESI-MS analysis of an aqueous mixture of drugs yielded detection limits in the low parts-per-billion range. Signal response was linear over more than 3 orders of magnitude. Tandem mass spectrometry experiments were used to identify components of this mixture. ESI was also applied to the analysis of peptides and in this case multiply charged species were observed for compounds of molecular weight up to 1200 Da. Cocaine samples deposited or already present on different surfaces, including currency, were rapidly analyzed in situ by DESI. A geometry-independent version of the DESI ion source was also coupled to the miniature mass spectrometer. These results demonstrate that atmospheric pressure ionization can be implemented on simple portable mass spectrometry systems.  相似文献   

18.
An integrated 10-pump eight-channel LC/MS system has been developed for automated high-throughput analysis of intact proteins in recombinant protein purification processes. The key features of the system include (1) a compact 10-pump HPLC module that uses two pumps to generate a binary gradient and 8 pumps to deliver the mixed gradient to eight independent flow channels; (2) a TOF mass spectrometer with an eight-channel multiplexed ESI interface, which records separate data for all eight channels over each HPLC run cycle; and (3) highly automated data processing software that allows unattended calculation of protein molecular weight (in Da) from original mass spectral data (in m/z). This system was used in the routine screening of fractions from preparative scale chromatography to monitor the purification process with the required mass accuracy and throughput. As an example, the production and purification of an acylated protein with a molecular weight of 9 kDa is described. Using this off-line approach, it is practical to fully characterize protein-containing fractions from column chromatography with an overall analytical throughput of 1 min/protein sample with minimum operator involvement.  相似文献   

19.
Electron detachment dissociation (EDD), recently introduced by Zubarev and co-workers for the dissociation of multiply charged biomolecular anions via a radical ion intermediate, has been shown to be analogous to electron capture dissociation (ECD) in several respects, including more random peptide fragmentation and retention of labile posttranslational modifications. We have previously demonstrated unique fragmentation behavior in ECD compared to vibrational excitation for oligodeoxynucleotide cations. However, that approach is limited by the poor sensitivity for oligonucleotide ionization in positive ion mode. Here, we show implementation of EDD on a commercial Fourier transform ion cyclotron resonance mass spectrometer utilizing two different configurations: a heated filament electron source and an indirectly heated hollow dispenser cathode electron source. The dispenser cathode configuration provides higher EDD efficiency and additional fragmentation channels for hexamer oligodeoxynucleotides. As in ECD, even-electron d/w ion series dominate the spectra, but we also detect numerous a/z (both even-electron and radical species), (a/z - B), c/x, (c/x - B), and (d/w - B) ions with minimal nucleobase loss from the precursor ions. In contrast to previous high-energy collision-activated dissociation (CAD) and ion trap CAD of radical oligonucleotide anions, we only observe minimum sugar cross-ring cleavage, possibly due to the short time scale of EDD, which limits secondary fragmentation. Thus, EDD provides fragmentation similar to ECD for oligodeoxynucleotides but at enhanced sensitivity. Finally, we show that noncovalent bonding in a DNA duplex can be preserved following EDD, illustrating another analogy with ECD. We believe the latter finding implies EDD has promise for characterization of nucleic acid structure and folding.  相似文献   

20.
A multiplexing method for performing MS/MS on multiple peptide ions simultaneously in a quadrupole ion trap mass spectrometer (QITMS) has been developed. This method takes advantage of the inherent mass bias associated with ion accumulation in the QITMS to encode the intensity of precursor ions in a way that allows the corresponding product ions to be identified. The intensity encoding scheme utilizes the Gaussian distributions that characterize the relationship between ion intensities and rf trapping voltages during ion accumulation. This straightforward approach uses only two arbitrary waveforms, one for isolation and one for dissociation, to gather product ion spectra from N precursor ions in as little as two product ion spectra. In the example used to illustrate this method, 66% of the product ions from five different precursor peptide ions were correctly correlated using the multiplexing approach. Of the remaining 34% of the product ions, only 6% were misidentified, while 28% of the product ions failed to be identified because either they had too low intensity or they had the same m/z ratio as one of the precursor ions or the same m/z ratio as a product ion from a different precursor ion. This method has the potential to increase sample throughput, reduce total analysis times, and increase signal-to-noise ratios as compared to conventional MS/MS methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号