首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 61 毫秒
1.
采用Gleeble-1500D热模拟试验机进行高温等温压缩变形试验,研究了B95оч铝合金在变形温度为330~450℃、应变速率为0.001~1.000 s-1条件下的热变形行为,并利用金相显微镜(OM)和透射电子显微电镜(TEM)分析了B95оч铝合金在不同变形条件下的组织特征。研究结果表明:变形温度和应变速率对B95оч铝合金的流变应力大小有着显著的影响,合金的流变应力随变形温度的升高而降低,随应变速率的增加而增大。B95оч铝合金在450℃以下热变形过程中析出大量的第二相粒子,并随着温度的降低数量显著增加。B95оч铝合金热变形后平均亚晶尺寸随Zener-Hollomon参数的升高而减小,即随着变形温度的降低、应变速率的升高而减小。B95оч铝合金热变形的流变应力行为可以用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为124.09 kJ·mol-1。  相似文献   

2.
采用Gleeble-1500D热模拟机进行热压缩变性试验,研究7N01铝合金在变形温度为340 ~460℃、应变速率为0.01~ 10.00 s-1条件下的流变应力行为.结果表明:变形温度和应变速率对合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高;合金在低应变速率(0.01,0.10,1.00s-1)时主要为动态回复软化机制,而在高应变速率(10.00 s-1)时出现动态再结晶软化;7N01铝合金的高温流变行为可用Zener-Hollomon参数描述.  相似文献   

3.
采用圆柱试样在Gleeble-1500热/力模拟试验机上进行高温压缩变形试验,研究了2124铝合金在高温塑性变形过程中流变应力的变化规律.试验在变形温度为350~480 ℃、应变速率0.04~10 s-1的条件下进行.结果表明:应变速率和变形温度的变化对合金稳态流变应力有明显的影响,在低应变速率条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出近稳态特征;而在高应变速率条件下,应力出现强烈锯齿波动,达到峰值后随着应变的增加锯齿波动趋于平缓;2124铝合金高温塑性变形时的流变行为可用Zener-Hollomon参数的双曲正弦函数来描述.  相似文献   

4.
采用了MMS-100热力模拟试验机对5182铝合金进行单道次压缩实验,对其热变形行为展开研究,构建了流变应力模型和加工图.结果发现:5182铝合金的流变应力随温度的升高、应变速率的降低而逐渐减小;高温条件会促使动态再结晶的发生,而应变速率的影响可以忽略;合金的真应力-真应变曲线在高应变速率时会出现锯齿状波动;合金在加热温度420~500 ℃、真应变ε= 0.4、应变速率的热变形条件下会有一个高功率耗散因子区域;合金在450 ℃附近存在较大安全加工区域.   相似文献   

5.
在Gleeble-1500热模拟机上,采用高温等温压缩,在应变速率为0.001~10 s-1和变形温度为300℃~500℃条件下对5052铝合金的流变应力行为进行了研究。结果表明:在应变速率为0.1 s-1(变形温度为420℃~500℃)以及应变速率为0.01和0.001(变形温度为300℃~500℃)时,5052铝合金热压缩变形出现了明显的峰值应力,表现为连续动态再结晶特征;在其他变形条件下存在较为明显的稳态流变特征。可采用Zener-Hol-lomon参数的双曲正弦函数来描述5052铝合金高温变形时的流变应力行为;在获得的流变应力σ解析表达式中A、α和n值分别为12.68×1011s-1,0.023MPa-1和5.21;其热变形激活能Q为182.25 kJ/mol。  相似文献   

6.
TB2钛合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
在Gleeble-1500D热/力模拟试验机上,采用高温等温压缩试验,对TB2钛合金在高温压缩变形中流变应力行为进行了研究;应变速率为0.01-10 s^-1,变形温度为600-1200℃。结果表明:应变速率和变形温度的变化显著地影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可用Zener-Hollomon参数的双曲正弦函数形式来描述合金的流变应力行为。  相似文献   

7.
超高强Al-Zn-Mg-Cu-Zr合金的热变形行为   总被引:8,自引:2,他引:8  
李杰  尹志民  黄继武  王涛 《稀有金属》2004,28(1):166-170
采用圆柱试样在Gleeble-1500热模拟机上进行恒温和恒速压缩变形实验,变形温度范围为350~450℃,应变速率范围为0.001~0.1s^-1。研究了。7055铝合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n。结果表明,流变应力随变形温度的升高而降低,随应变速率的提高而增大。可用应力-应变速率方程来描述7055铝合金高温压缩变形时的热变形行为。这种合金在350~450℃温度范围内的热变形组织为发生了动态回复并伴随有少量再结晶的组织。  相似文献   

8.
采用光学金相、热压缩实验和本构方程计算,研究了7085铝合金在不同热变形工艺下的热变形行为。实验结果表明,在热变形温度350~460℃和变形速率0.01~10 s-1范围中,随着7085铝合金变形温度的提高和速率降低,合金的变形峰值应力随之降低,7085铝合金呈现出正应变速率敏感性;采用Arrhenius本构关系构建了7085铝合金热变形的本构模型,并建立了7085铝合金变形温度和速率范围内的热加工图,确定出7085铝合金热变形加工的合适工艺范围温度为420~460℃,应变速率0.01~0.3 s-1。在此工艺条件下,合金变形稳定且易于金属流动。  相似文献   

9.
在应变速率为0.01~10.00 s-1、变形温度为700~850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu-Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu-Ag合金的最佳变形工艺参数主要处于3个区间:低温低应变速率区(变形温度为700~770℃,应变速率为0.0100~0.0316 s-1),该区域的峰值功率耗散系数η为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1~1.0 s-1),该区域的峰值功率耗散系数η为0.33;和高温高应变速率区(变形温度为835~850℃,应变速率为3.162~10.000 s-1),该区域的功率耗散系数η峰值为0.33。  相似文献   

10.
3104铝合金热变形流变应力模型   总被引:1,自引:0,他引:1  
陈文  林林  邓成林 《铝加工》2007,(5):22-24
采用等温压缩试验,研究了3104铝合金在应变速率为0.001-1s^-1、变形温度为573-773K条件下的流变应力行为。结果表明,3104合金流变应力对应变速率和变形温度十分敏感,合金高温塑性变形时存在稳态流变特征,并建立了合金热变形流变应力模型。  相似文献   

11.
在Oleeble-1500热模拟机上,对5083铝合金进行高温等温压缩热模拟,分析了流变应力与应变速率、变形温度之间的关系和高温变形的内在机理,同时血对合金元素对流变应力的影响进行了分析。结果表明:在应变速率为0.01s^-1、0.1s^-1、1s^-1(400℃、450℃)和0.01s^-1(350℃),其流变应力出现明显的峰值应力,表现出连续动态冉结品特征;在0.1s^-1、1s^-1(350℃),表现为稳态流变,为动态回复。采用双曲正弦形式的Arrhenius关系来描述5083铝合金高温变形时的流变应力,获得5083的材料常数A、α、n和Q分别为0.06918s^-1、0.01002MPa^-1、3.2819和149.67kJ/mol。在不同的应变率比值下计算应变率敏感(SRS)系数(m=dlnσ/dlnε),发现随着温度升高,应变增大,m值增大。  相似文献   

12.
Al-Cu-Mg-Ag合金热压缩变形行为的预测   总被引:1,自引:0,他引:1  
采用了热模拟实验机研究了Al-Cu-Mg-Ag耐热铝合金的热压缩变形行为。实验的温度和应变速率分别为340~500℃,0.001~10 s-1。分别用了本构方程和人工神经网络来对Al-Cu-Mg-Ag合金的流变行为进行了分析和模拟。神经网络的结构是3-20-1;输入参数是温度,应变速率和应变;输出参数是流变应力。结果表明该合金的流变曲线出现加工硬化、过渡、软化和稳态流变这4个阶段,流变应力随着应变速率的增加而增大,随着变形温度的下降而减少。用所建立的神经网络模型预测了变形温度和应变速率对流变应力的影响,预测的结果与热压缩变形的基础理论吻合得很好,而且该模型可以很好地描述Al-Cu-Mg-Ag合金的流变应力,在应变速率为0.001~10 s-1的条件下,其平均相对误差分别为3.68%,3.98%,1.53%,3.53%和2.04%。这表明神经网络的预测性能优良,具有很强的推广能力。同时通过本构方程和神经网络的预测结果比较看出神经网络模型的相关系数比较高,而且神经网络比本构方程有更好的预测性能。神经网络可以预测不同应变下的相应的流变应力,但是本构方程只可以根据不同的应变速率和温度来预测峰值应力。  相似文献   

13.
通过热模拟压缩实验,研究了变形温度、应变速率对Ti-B25合金高温变形时流动应力和峰值流动应力的影响,并结合组织演变规律揭示了其高温塑性流动软化机理.结果表明:流动应力和峰值流动应力均随变形温度的下降以及应变速率的增大而增大.应变速率为10.0 s-1时,随着变形温度的升高,流动软化程度减小,并且α+β两相区的软化程度...  相似文献   

14.
在Cleeble-1500热/力模拟机上对2026合金进行了热压缩试验,研究了其在温度300~450℃和应变速率0.01~10 s-1条件下的热变形行为.结果表明:热变形过程中的流变应力可以很好用双曲正弦本构关系来描述,通过优化α值,可以更精确地得到该合金的表观激活能为230.51kJ/mo1.根据材料动态模型,计算并...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号