首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
We introduce a new method for material characterization at the nanoscale using a recently developed atomic force microscope (AFM) probe. The FIRAT (force sensing integrated readout and active tip) probe is integrated into a commercial AFM system to obtain time-resolved interaction forces (TRIFs) between the probe tip and sample at speeds suitable for nondestructive and fast imaging of material properties. We present a basic interaction model to extract the material elasticity and surface energy. Numerical simulations are performed and compared to the experimental results for three different polymers and a silicon sample. We find that our interaction model does not completely explain the observed long-range surface forces, but it agrees fairly well with the measurements during the tip-sample contact.  相似文献   

2.
An appropriate calibration positioning method is imperative to examine localized tip on nanoscale patterns for scanning probe microscopy (SPM). This paper is to develop a new nanofabrication processes for AFM tip positioning with image stitching method in tip plowing technology. Moreover, this paper adjusts the set-point amplitude (A(sp)) to develop the tip plowing technology for fabricating nanopattern on 55 nm grating gage of a silicon substrate. The developed image stitching program is based on an iterative closet point (ICP) algorithm which has six degrees of freedom alignment. A closed-loop piezo motor is used to tip approach and plow in Z-axis. Experimental result of fabricating nanobagua on 55 nm grating of silicon substrate show that the developed positioning processes with image stitching method verify the feasibility of repeatability for the tip plowing technology successfully. This developed method can be further performed by a commercial atomic force microscope (AFM) with CAD/CAM. This technology can also be applied in dip pen nanolithography (DPN), SPM oxidation lithography and related fabrication technology with AFM tips.  相似文献   

3.
Zhao Y  An KH  Chen S  O'Connor B  Pipe KP  Shtein M 《Nano letters》2007,7(12):3645-3649
An organic light-emitting device was fabricated on a commercial atomic force microscopy (AFM) probe having a pyramidal tip by a lithography-free vacuum thermal evaporation (VTE) process. The line-of-sight molecular transport characteristic of VTE results in controlled thickness variation across the nonplanar substrate, such that localized current injection occurs at the tip region. Furthermore, the high curvature of the AFM tip vertex concentrates the electric field, causing highly localized bipolar charge injection, accompanied by photon emission from a region less than a micrometer across. This light source exhibits a range of features potentially attractive for applications such as probe-based optical microscopy, nanoscale light sensing, and chemical detection.  相似文献   

4.
双探针对顶测量可以有效地消除传统原子力显微镜(AFM)的探针形状对关键尺寸(CD)测量的影响。测量前需要将两个探针针尖(A和B)接触到一起作为测量零点,为实现双探针纳米级对准,提出一种渐进式平面扫描方法。首先,通过视觉图像引导两个探针对准到1μm以内。然后,两个探针继续接近,同时探针A在YOZ平面内对探针B扫描成像,并逐步缩小扫描范围和扫描步进,得到其针尖的纳米级坐标(YB,ZB)。最后,将探针A在Y和Z方向分别移动至YB和ZB,在X方向继续接近探针B直至两探针接触。实验证明,该方法可有效地实现双探针对准,且对准精度为10 nm。  相似文献   

5.
A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dugdale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.  相似文献   

6.
Surface modification of MALDI probes is an attractive approach for combining bioaffinity isolation of targeted biomolecules with mass spectrometric analysis of the captured species. In this work, we demonstrate that a polymer thin film, produced by pulsed rf plasma polymerization of allylamine and deposited directly on a MALDI probe, can be subsequently biotinylated to develop a bioaffinity capture MALDI probe. The synthesis and characterization of the probe by XPS, FT-IR, and AFM is described, and the selective isolation of avidin from a three-component mixture of avidin, lysozyme, and cytochrome c is presented. These initial results offer encouragement for the further exploration of rf plasma polymer deposition as a novel approach for the development of on-probe affinity capture MALDI probes.  相似文献   

7.
We report fabrication as well as proof-of-concept experiments of a noninvasive sensor of weak nanoscale electric fields. The sensor is a single electron transistor (SET) placed at the tip of a noncontact atomic force microscope (AFM). This is a general technology to make any nanometer-sized lithography pattern at edges or tips of a cantilever. The height control of the AFM allows the SET to hover a few nanometers above the substrate, improving both the electric field sensitivity and lateral resolution of the electrometer. Our AFM-SET sensor is prepared by a scalable technology. It means that the probe can be routinely fabricated and replaced, if broken.  相似文献   

8.
Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long‐term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer‐scale regime. Accordingly, to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer‐scale radius of an atomic force microscopy (AFM) tip yields a very low signal‐to‐noise ratio. However, the detection is unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive‐up‐negative‐down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm?2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The obtained results show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.  相似文献   

9.
Tapping-mode atomic force microscopy provides a means for successful and non-intrusive characterization of soft physical and biological structures at the nanoscale. Its full potential can only be realized, provided that the response of the oscillating probe tip to the strongly nonlinear, near-field force interactions with the structure and the intermittency of contact can be accurately modelled, analysed, controlled and interpreted. To this end, this paper reviews some experimental observations of fundamentally nonlinear behaviour of the tip dynamics. It discusses the nonlinear phenomenology that explains their presence in the tapping-mode operation of the atomic force microscope. Particular emphasis is placed on the coexistence of different steady-state responses and their origin in transitions across regions of rapidly varying force characteristics. The heuristics of a recently developed method for treating such transitions are presented and insights into its implications are drawn from related micro- and nanoscale applications.  相似文献   

10.
Many common atomic force microscope (AFM) spring constant calibration methods regard the AFM probe as a uniform cantilever, neglecting the tip mass and any nonuniformity in the thickness of the probe along its length. This work quantifies the error in the spring constant estimated by the Sader and thermal calibration methods due to nonuniformity in the thickness of the cantilever and the influence of the mass loading effect of the probe tip. Formulae are presented that can be used to compute the uncertainty in cantilever calibration for an arbitrary thickness nonuniformity, or to correct the calibration methods if the thickness nonuniformity is known. The results show that both methods are quite sensitive to nonuniformity. When the first dynamic mode is used in the calibration, the error in the spring constant estimated by either method is between - 4% and 9% for a cantilever whose thickness increases or decreases linearly by 30% along its length. The errors are several times larger if the second or higher dynamic modes are used. To illustrate the proposed methods, a commercial AFM probe that has significant nonuniformity is considered and the error in calibrating this probe is quantified and discussed. For this particular probe, variations in the thickness of the probe over the last 15% of its length are found to significantly reduce the accuracy of the calibration when the thermal method is used, since that method is sensitive to changes in the shape of the eigenmode of the probe near its free end.  相似文献   

11.
Jones AC  Raschke MB 《Nano letters》2012,12(3):1475-1481
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy.  相似文献   

12.
In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple‐probe scanning probe microscopes (MP‐SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP‐SPM is used not only for observing high‐resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double‐probe STM (DP‐STM) developed by the authors, which was subsequently modified to a triple‐probe STM (TP‐STM), has been used to measure the conductivities of one‐dimensional metal nanowires and carbon nanotubes and also two‐dimensional molecular films. A quadruple‐probe STM (QP‐STM) has also been developed and used to measure the conductivity of two‐dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple‐probe AFM (QP‐AFM) with four conductive tuning‐fork‐type self‐detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general‐purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP‐AFM. These developments and applications of MP‐SPMs are reviewed in this paper.  相似文献   

13.
The use of scanning probe microscopy-based techniques to manipulate single molecules and deliver them in a precisely controlled manner to a specific target represents a significant nanotechnological challenge. The ultimate physical limit in the design and fabrication of organic surfaces can be reached using this approach. Here we show that the atomic force microscope (AFM), which has been used extensively to investigate the stretching of individual molecules, can deliver and immobilize single molecules, one at a time, on a surface. Reactive polymer molecules, attached at one end to an AFM tip, are brought into contact with a modified silicon substrate to which they become linked by a chemical reaction. When the AFM tip is pulled away from the surface, the resulting mechanical force causes the weakest bond - the one between the tip and polymer - to break. This process transfers the polymer molecule to the substrate where it can be modified by further chemical reactions.  相似文献   

14.
Chen BY  Yeh MK  Tai NH 《Analytical chemistry》2007,79(4):1333-1338
Atomic force microscopy (AFM) probe with different functions can be used to measure the bonding force between atoms or molecules. In order to have accurate results, AFM cantilevers must be calibrated precisely before use. The AFM cantilever's spring constant is usually provided by the manufacturer, and it is calculated from simple equations or some other calibration methods. The spring constant may have some uncertainty, which may cause large errors in force measurement. In this paper, finite element analysis was used to obtain the deformation behavior of the AFM cantilever and to calculate its spring constant. The influence of prestress, ignored by other methods, is discussed in this paper. The variations of Young's modulus, Poisson's ratio, cantilever geometries, tilt angle, and the influence of image tip mass were evaluated to find their effects on the cantilever's characteristics. The results were compared with those obtained from other methods.  相似文献   

15.
Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip–sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques.  相似文献   

16.
Complex synthetic formulations based on polysorbates can be challenging to characterize. They may be composed of many similar products including those of the same molecular weight, which cannot be readily separated by separation science approaches. Carbon number variation and ethylene oxide distribution add to the complexity. The properties of these formulations will be dependent on the chemical structure and relative concentration of formulation components. Here we describe the use of two experimental approaches based on mass spectrometry to provide enhanced characterization of these formulations. The first utilizes an atmospheric pressure solids analysis probe to rapidly determine the percentage content of individual esters in a formulation. These are shown to be in good agreement with product specification sheets. In a second approach, mobility separation has been integrated into a MALDI-MS/MS experiment to categorize major, minor, and trace ingredients. Components of identical molecular mass in the polysorbate formulations have been separated by ion mobility and then fragmented for additional characterization. The rapidity and level of structural detail provided by these experiments offers a significant opportunity to develop practical screening methods for complex formulations.  相似文献   

17.
We describe a method for the production of nanoelectrodes at the apex of atomic force microscopy (AFM) probes. The nanoelectrodes are formed from single-walled carbon nanotube AFM tips which act as the template for the formation of nanowire tips through sputter coating with metal. Subsequent deposition of a conformal insulating coating, and cutting of the probe end, yields a disk-shaped nanoelectrode at the AFM tip apex whose diameter is defined by the amount of metal deposited. We demonstrate that these probes are capable of high-resolution combined electrochemical and topographical imaging. The flexibility of this approach will allow the fabrication of nanoelectrodes of controllable size and composition, enabling the study of electrochemical activity at the nanoscale.  相似文献   

18.
An atomic force microscopy image is a dilation of the specimen surface with the probe tip. Tips wear or are damaged as they are used. And AFM tip shape and position status make AFM images distorted. So it is necessary to characterize AFM tip shape and position parameters so as to reconstruct AFM images. A geometric model-based approach is presented to estimate AFM tip shape and position status by AFM images of test specimens and scanning electron microscope (SEM) images of AFM tip. In this model, the AFM tip is characterized by using a dynamic cone model. The geometric relationship between AFM tip and the sample structure is revealed in linewidth and profile measurement. The method can easily calculate the tip parameters including half-cone angle, installation angle, scanning tilting angle and curvature radius, and easily estimate the position status of AFM tip when AFM tip moves on the specimen. The results of linewidth and profile measurement are amended accurately through this approach.  相似文献   

19.
Wang X  Liu C 《Nano letters》2005,5(10):1867-1872
This letter reports the design, fabrication, and testing of a multifunctional scanning probe array for nanoscale imaging and patterning. The probe array consists of multiple cantilever probes, with each probe being able to perform a dedicated function such as scanning probe lithography (e.g., dip pen nanolithography and scanning probe contact printing) or scanning probe microscopy (e.g., atomic force microscopy and lateral force microscopy). The bending states of each probe can be controlled by using an integrated thermal electric actuator so that it is possible to engage any individual probe(s) independently for writing or imaging purposes. The multifunctional probe array is therefore capable of performing a rich variety of operations with minimal chemical crosstalk and high registration accuracy. It will eliminate the need for probe chip exchanges and increase the operational efficiency. The probe tips in a given array may be made of different materials. Further, the tip and cantilever may be made of different materials for a given probe. In this work, we focus on the development of a probe array consisting of dip pen nanolithography probes, scanning probe contact printing probes (of various tip sizes), and scanning probe microscopy probes.  相似文献   

20.
The electrochemically active area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic force microscopy (CP-AFM). A platinum-coated AFM tip is used as a nanoscale cathode in an operating PEMFC. We present results that show highly inhomogeneous distributions of conductive surface domains at several length scales. At length scales on the order of the aqueous domains of the membrane, approximately 50 nm, we observe single channel electrochemistry. I-V curves for single conducting channels are obtained, which yield insight into the nature of conductive regions across the PEM. In addition, we demonstrate a new characterization technique, phase current correlation microscopy, which gives a direct measure of the electrochemical activity for each aqueous domain. This shows that a large number ( approximately 60%) of the aqueous domains present at the surface of an operating Nafion membrane are inactive. We attribute this to a combination of limited aqueous domain connectivity and catalyst accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号