共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目前关于概念漂移数据流的分类研究已经取得了许多成果,但大部分没有充分考虑到数据流中概念重复出现的情况,这将耗费大量的计算和内存资源,增加了分类错误的可能性。为此,基于概念的重复性提出了一种数据流集成分类算法,该算法运用集成分类思想处理数据流中的概念漂移,但在学习过程中不会将暂时失效的概念及对应基分类器删除,而是把它们的基本信息存储起来,方便以后调用,并可根据概念间的转换关系预测即将到来的概念,在提高分类精度的同时又提高了时间效率。实验结果验证了算法的有效性。 相似文献
3.
4.
详细介绍了国内外集成分类算法,对集成分类算法的两个部分(基分类器组合和动态更新集成模型)进行了详细综述,明确区分不同集成算法的优缺点,对比算法和实验数据集。并且提出进一步的研究方向和考虑的解决办法。 相似文献
5.
6.
鉴于流数据具有实时、连续、有序和无限等特点,使用近似方法便可检测连续分时段的流数据序列,基于此,运用目标分布数据,结合相似分布理论,提出了利用 Tr-OEM 算法对流数据中的概念漂移现象进行检测.该算法能够动态地判断流数据概念漂移的发生,自适应地优化概念漂移的检测值,适用于不同类型的流数据.通过分析和实验仿真可以表明,该算法在处理流数据概念漂移时具有较好的适应性. 相似文献
7.
一种面向周期性概念漂移的数据流分类算法 总被引:1,自引:0,他引:1
数据流挖掘已在许多领域得到应用,概念漂移检测是数据流挖掘研究中的一个重点.目前关于数据流中的概念检测的研究虽然取得了很多成果,却没有充分考虑到数据流概念"周期性"出现的特点.针对周期性概念漂移的特点,提出了当"历史概念"重现时,利用对应的模型来对数据流进行分类的方法,从而减小模型更新的代价,加快分类预测的速度.实验证明这种方法提高了运行效率. 相似文献
8.
目前数据流分类算法大多是基于类分布这一理想状态,然而在真实数据流环境中数据分布往往是不均衡的,并且数据流中往往伴随着概念漂移。针对数据流中的不均衡问题和概念漂移问题,提出了一种新的基于集成学习的不均衡数据流分类算法。首先为了解决数据流的不均衡问题,在训练模型前加入混合采样方法平衡数据集,然后采用基分类器加权和淘汰策略处理概念漂移问题,从而提高分类器的分类性能。最后与经典数据流分类算法在人工数据集和真实数据集上进行对比实验,实验结果表明,本文提出的算法在含有概念漂移和不均衡的数据流环境中,其整体分类性能优于其他算法的。 相似文献
9.
通过对数据流分类中的概念漂移问题的研究,提出了一种在线装袋(Online Bagging)算法的改进算法——自适应抽样参数的在线装袋算法AdBagging(adaptive lambda bagging)。利用在分类过程中出现的误分样本数量来调整Online Bagging算法中的泊松(Poisson)分布的抽样参数,从而可以动态调整新样本在学习器中的权重,即对于数据流中的误分类样本给予较高的学习权重因子,而对于正确分类的样本给予较低的学习权重因子,同时结合样本出现的时间顺序调整权重因子,使得集成分类器可以动态调整其多样性(adversity)。该算法具有OnlineBagging算法的高效简洁优点,并能解决数据流中具有概念漂移的问题,人工数据集和实际数据集上的实验结果表明了该算法的有效性。 相似文献
10.
集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过\"回忆与遗忘\"机制,不仅使历史上有用的基分类器因记忆强度高而保存在\"记忆库\"中,提高预测的稳定性,而且从\"记忆库\"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的\"回忆\"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响. 相似文献
11.
针对大数据环境下分类精度不高的问题,提出了一种面向分布式数据流的集成分类模型.首先,使用微簇模式减少局部节点向中心节点传输的数据量,降低通信代价;然后,使用样本重构算法生成全局分类器的训练样本;最后,提出一种面向漂移数据流的集成分类模型,采用动态分类器和稳定分类器的加权组合策略,使用混合标记策略标记最具代表性的样本以更... 相似文献
12.
自适应随机森林分类器在每个基础分类器上分别设置了警告探测器和漂移探测器,实例训练时常常会同时触发多个警告探测器,引起多棵背景树同步训练,使得运行所需的内存大、时间长。针对此问题,提出了一种改进的自适应随机森林集成分类算法,将概念漂移探测器设置在集成学习器端,移除各基础树端的漂移探测器,并根据集成器预测准确率确定需要训练的背景树的数量。用改进后的算法对较平衡的数据流进行分类,在保证分类性能的前提下,与改进前的算法相比,运行时间有所降低,消耗内存有所减少,能更快适应数据流中出现的概念漂移。 相似文献
13.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的. 相似文献
14.
数据流中的概念漂移和类别不平衡问题会严重影响数据流分类算法的性能和稳定性.针对二分类数据流中概念漂移和类别不平衡的问题,在基于数据块的集成分类方法上引入成员分类器权重的在线更新机制,结合重采样和自适应滑动窗口技术,提出了一种基于G-mean加权的不平衡数据流在线分类方法(online G-mean update ensemble for imbalance learning, OGUEIL).该方法基于集成学习框架,利用时间衰减因子增量计算成员分类器最近若干实例上的G-mean性能,并确定成员分类器权重,每到达一个新实例,在线更新所有成员分类器及其权重,并对少类实例进行随机过采样.同时,OGUEIL会周期性地根据当前数据构造类别平衡数据集训练新的候选分类器,并选择性地添加至集成框架中.在真实和人工数据集上的结果表明,所提方法的综合性能优于其他同类方法. 相似文献
15.
一种基于时间衰减模型的数据流闭合模式挖掘方法 总被引:1,自引:0,他引:1
数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象。在一些数据流应用中,通常认为最新的数据具有最大的价值。数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式。因此,提出了一种基于时间衰减模型和闭合算子的数据流闭合模式挖掘方式TDMCS (Time-Decay-Model-based Closed frequent pattern mining on data Stream)。该算法采用时间衰减模型来区分滑动窗口内的历史和新近事务权重,使用闭合算子提高闭合模式挖掘的效率,设计使用最小支持度-最大误差率-衰减因子的三层架构避免概念漂移,设计一种均值衰减因子平衡算法的高查全率和高查准率。实验分析表明该算法适用于挖掘高密度、长模式的数据流;且具有较高的效率,在不同大小的滑动窗口条件下性能表现是稳态的,同时也优于其他同类算法。 相似文献
16.
一种自适应局部概念漂移的数据流分类算法 总被引:1,自引:0,他引:1
本文基于DB2算法提出一个能实时检测局部概念漂移,并随之自适应调整的数据流分类算法IncreDB2.该算法动态增量维护一个层次分类树.当局部概念漂移出现时,IncreDB2不是重新构造一个全新的分类树,而是仅更新漂移所影响到的局部结点,具有较高的时间效率.实验结果表明了该算法的正确性和有效性. 相似文献
17.
18.
传统分类器系综数据流分类算法内存消耗高、计算开销大。针对该问题,提出一种按需系综分类算法。根据数据流的特点,按需动态调整分类器的个数和权值,从而保持较高分类精度、降低开销。通过对2种人工数据流的实验分析表明,该算法对隐含概念漂移的数据流分类效率及精度都有一定提升,内存开销有所降低。 相似文献
19.
20.
提出类别属性数据流数据离群度量--加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩 相似文献