首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于多分类器的数据流中的概念漂移挖掘   总被引:4,自引:0,他引:4  
数据流中概念漂移的检测是当前数据挖掘领域的重要研究分支, 近年来得到了广泛的关注. 本文提出了一种称为 M_ID4 的数据流挖掘算法. 它是在大容量数据流挖掘中, 通过尽量少的训练样本来实现概念漂移检测的快速方法. 利用多分类器综合技术, M_ID4 实现了数据流中概念漂移的增量式检测和挖掘. 实验结果表明, M_ID4 算法在处理数据流的概念漂移上表现出比已有同类算法更高的精确度和适应性.  相似文献   

2.
在开放环境下,数据流具有数据高速生成、数据量无限和概念漂移等特性.在数据流分类任务中,利用人工标注产生大量训练数据的方式昂贵且不切实际.包含少量有标记样本和大量无标记样本且还带概念漂移的数据流给机器学习带来了极大挑战.然而,现有研究主要关注有监督的数据流分类,针对带概念漂移的数据流的半监督分类的研究尚未引起足够的重视....  相似文献   

3.
针对不平衡噪声数据流的分类问题,本文利用基于平均概率的集成分类器AP与抽样技术,提出了一种处理不平衡噪声数据流的集成分类器(IMDAP)模型。实验结果表明,该集成分类器更能适应存在概念漂移与噪声的不平衡数据流挖掘分类,其整体分类性能优于AP集成分类器模型,能明显提升少数类的分类精度,并且具有与AP相近的时间复杂度。  相似文献   

4.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的.  相似文献   

5.
一种基于时间衰减模型的数据流闭合模式挖掘方法   总被引:1,自引:0,他引:1  
数据流是随着时间顺序快速变化的和连续的,对其进行频繁模式挖掘时会出现概念漂移现象。在一些数据流应用中,通常认为最新的数据具有最大的价值。数据流挖掘会产生大量无用的模式,为了减少无用模式且保证无损压缩,需要挖掘闭合模式。因此,提出了一种基于时间衰减模型和闭合算子的数据流闭合模式挖掘方式TDMCS (Time-Decay-Model-based Closed frequent pattern mining on data Stream)。该算法采用时间衰减模型来区分滑动窗口内的历史和新近事务权重,使用闭合算子提高闭合模式挖掘的效率,设计使用最小支持度-最大误差率-衰减因子的三层架构避免概念漂移,设计一种均值衰减因子平衡算法的高查全率和高查准率。实验分析表明该算法适用于挖掘高密度、长模式的数据流;且具有较高的效率,在不同大小的滑动窗口条件下性能表现是稳态的,同时也优于其他同类算法。  相似文献   

6.
Conventional classification algorithms are not well suited for the inherent uncertainty, potential concept drift, volume, and velocity of streaming data. Specialized algorithms are needed to obtain e?c...  相似文献   

7.
赵强利  蒋艳凰  卢宇彤 《软件学报》2015,26(10):2567-2580
集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过"回忆与遗忘"机制,不仅使历史上有用的基分类器因记忆强度高而保存在"记忆库"中,提高预测的稳定性,而且从"记忆库"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的"回忆"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响.  相似文献   

8.
概念漂移数据流挖掘算法综述   总被引:1,自引:0,他引:1  
丁剑  韩萌  李娟 《计算机科学》2016,43(12):24-29, 62
数据流是一种新型的数据模型,具有动态、无限、高维、有序、高速和变化等特性。在真实的数据流环境中,一些数据分布是随着时间改变的,即具有概念漂移特征,称为可变数据流或概念漂移数据流。因此处理数据流模型的方法需要处理时空约束和自适应调整概念变化。对概念漂移问题和概念漂移数据流分类、聚类和模式挖掘等内容进行综述。首先介绍概念漂移的类型和常用概念改变检测方法。为了解决概念漂移问题,数据流挖掘中常使用滑动窗口模型对新近事务进行处理。数据流分类常用的模型包括单分类模型和集成分类模型,常用的方法包括决策树、分类关联规则等。数据流聚类方式通常包括基于k- means的和非基于k- means的。模式挖掘可以为分类、聚类和关联规则等提供有用信息。概念漂移数据流中的模式包括频繁模式、序列模式、episode、模式树、模式图和高效用模式等。最后详细介绍其中的频繁模式挖掘算法和高效用模式挖掘算法。  相似文献   

9.
挖掘数据流中的频繁模式   总被引:17,自引:1,他引:17  
发现数据流中的频繁项是数据流挖掘中最基本的问题之一.数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用.针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法.算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘.通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε. 分析和实验表明算法有较好的性能.  相似文献   

10.
一种自适应局部概念漂移的数据流分类算法   总被引:1,自引:0,他引:1  
本文基于DB2算法提出一个能实时检测局部概念漂移,并随之自适应调整的数据流分类算法IncreDB2.该算法动态增量维护一个层次分类树.当局部概念漂移出现时,IncreDB2不是重新构造一个全新的分类树,而是仅更新漂移所影响到的局部结点,具有较高的时间效率.实验结果表明了该算法的正确性和有效性.  相似文献   

11.
陶克  王意洁 《计算机工程》2010,36(18):49-51
针对频繁闭项集挖掘算法中数据结构与处理机制复杂的问题,提出窗口快速滑动的数据流频繁闭项集挖掘算法——MFWSR。算法通过采用紧致的数据结构和简化的判断过程提高时空效率,支持响应不同用户支持度阈值的查询。实验结果表明,在保持已有算法精度的情况下,MFWSR具有更高的时空效率。  相似文献   

12.
频繁模式挖掘是数据挖掘的重要任务之一,在数据流上挖掘简洁的关键模式比频繁模式更有优势,因为关键模式既可以避免频繁模式里包含的冗余信息以减少内存存储空间,又可以高效无损地提取频繁模式.但是由于相邻时间戳的统计信息可以作为背景知识增强攻击者的推理能力,所以从包含个人信息的数据流中挖掘关键模式比静态场景下更容易泄露隐私.分析指出了数据流关键模式挖掘的隐私泄露问题及原理,并提出了一种满足差分隐私的数据流关键模式挖掘算法DP-CPM,该算法在每个时间戳设计一种两阶段机制:差异计算阶段和噪音挖掘阶段.该机制既考虑了隐私和数据效用之间的权衡,又考虑了挖掘时间和维护开销之间的权衡.为了提高数据流中连续发布时的数据效用性,在第1阶段通过计算差异来决定当前时间戳是返回低噪音统计值还是精确的近似统计值.如果是返回低噪音统计值,算法进入噪音挖掘阶段.在噪音挖掘阶段,首先通过判断查询集筛选出关键模式候选集,然后通过给筛选出的候选集里的模式支持度加入服从拉普拉斯分布的随机噪音,得到最终的噪音支持度.最后,给出了严格的理论分析和大量的实验,表明DP-CPM算法的有效性和执行效率.  相似文献   

13.
高维类别属性数据流离群点快速检测算法   总被引:1,自引:1,他引:1  
提出类别属性数据流数据离群度量--加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩  相似文献   

14.
随着通信技术和硬件设备的不断发展,尤其是小型无线传感设备的广泛应用,数据采集和生成技术变得越来越便捷和趋于自动化,研究人员正面临着如何管理和分析大规模动态数据集的问题。能够产生数据流的领域应用已经非常普通,例如传感器网络、金融证券管理、网络监控、Web日志以及通信数据在线分析等新型应用。这些应用的特征是环境配备有多个分布式计算节点;这些节点往往临近于数据源;分析和监控这种环境下的数据,往往需要对挖掘任务、数据分布、数据流入速率和挖掘方法有一定的了解。综述了分布式数据流挖掘的当前进展概况,并展望了未来可能的、潜在的专题研究方向。  相似文献   

15.
一种面向周期性概念漂移的数据流分类算法   总被引:1,自引:0,他引:1  
数据流挖掘已在许多领域得到应用,概念漂移检测是数据流挖掘研究中的一个重点.目前关于数据流中的概念检测的研究虽然取得了很多成果,却没有充分考虑到数据流概念"周期性"出现的特点.针对周期性概念漂移的特点,提出了当"历史概念"重现时,利用对应的模型来对数据流进行分类的方法,从而减小模型更新的代价,加快分类预测的速度.实验证明这种方法提高了运行效率.  相似文献   

16.
Many researchers have applied clustering to handle semi-supervised classification of data streams with concept drifts.However,the generalization ability for each specific concept cannot be steadily improved,and the concept drift detection method without considering the local structural information of data cannot accurately detect concept drifts.This paper proposes to solve these problems by BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)ensemble and local structure mapping.The local structure mapping strategy is utilized to compute local similarity around each sample and combined with semi-supervised Bayesian method to perform concept detection.If a recurrent concept is detected,a historical BIRCH ensemble classifier is selected to be incrementally updated;otherwise a new BIRCH ensemble classifier is constructed and added into the classifier pool.The extensive experiments on several synthetic and real datasets demonstrate the advantage of the proposed algorithm.  相似文献   

17.
基于滑动窗口的进化数据流聚类   总被引:24,自引:0,他引:24  
常建龙  曹锋  周傲英 《软件学报》2007,18(4):905-918
提出了纳伪(false positive)和拒真(false negative)两种聚类特征指数直方图分别来支持纳伪误差和拒真误差窗口的聚类分析;然后,提出一种基于滑动窗口的数据流聚类方法.该方法在占用窗口大小的次线性内存空间前提下,及时保存最近数据记录的分布状况,从而实现对滑动窗口内的数据进行聚类.此外,它还可被扩展用于N-n窗口(滑动窗口的扩展模型)的数据聚类.实验采用KDD-CUP'99和KDD-CUP'98真实数据集以及变换高斯分布的人工数据集构造进化数据流.理论分析和  相似文献   

18.
由于在信用卡欺诈分析等领域的广泛应用,学者们开始关注概念漂移数据流分类问题.现有算法通常假设数据一旦分类后类标已知,利用所有待分类实例的真实类别来检测数据流是否发生概念漂移以及调整分类模型.然而,由于标记实例需要耗费大量的时间和精力,该解决方案在实际应用中无法实现.据此,提出一种基于KNNModel和增量贝叶斯的概念漂移检测算法KnnM-IB.新算法在具有KNNModel算法分类被模型簇覆盖的实例分类精度高、速度快优点的同时,利用增量贝叶斯算法对难处理样本进行分类,从而保证了分类效果.算法同时利用可变滑动窗口大小的变化以及主动学习标记的少量样本进行概念漂移检测.当数据流稳定时,半监督学习被用于扩大标记实例的数量以对模型进行更新,因而更符合实际应用的要求.实验结果表明,该方法能够在对数据流进行有效分类的同时检测数据流概念漂移及相应地更新模型.  相似文献   

19.
挖掘数据流界标窗口Top-K频繁项集   总被引:3,自引:0,他引:3  
数据流频繁项集挖掘是目前数据挖掘与知识发现领域的热点研究课题,在许多领域有重要应用.然而支持度阈值的设定需要一定的领域知识,设置不当会给后续的分析处理带来很多困难和不必要的负担,因此挖掘数据流top-K频繁项集有重要意义.提出一个挖掘数据流界标窗口top-K频繁项集的动态增量近似算法TOPSIL-Miner,为此设计了存储流数据摘要信息的概要结构TOPSIL-Tree以及动态记录挖掘相关信息的树层最大支持度表MaxSL、项目序表OIL,TOPSET 和最小支持度表MinSL等,并分析了与这些概要结构相关的挖掘特性.在此基础上研究算法的3种优化措施:1)剪枝当前数据流的平凡项集;2)挖掘过程中启发式自适应提升挖掘阈值;3)动态提升剪枝阈值.对算法的误差上界进行了分析研究.最后通过实验验证了算法的可行性、精确性和时空高效性.  相似文献   

20.
数据流中的概念漂移和类别不平衡问题会严重影响数据流分类算法的性能和稳定性.针对二分类数据流中概念漂移和类别不平衡的问题,在基于数据块的集成分类方法上引入成员分类器权重的在线更新机制,结合重采样和自适应滑动窗口技术,提出了一种基于G-mean加权的不平衡数据流在线分类方法(online G-mean update ensemble for imbalance learning, OGUEIL).该方法基于集成学习框架,利用时间衰减因子增量计算成员分类器最近若干实例上的G-mean性能,并确定成员分类器权重,每到达一个新实例,在线更新所有成员分类器及其权重,并对少类实例进行随机过采样.同时,OGUEIL会周期性地根据当前数据构造类别平衡数据集训练新的候选分类器,并选择性地添加至集成框架中.在真实和人工数据集上的结果表明,所提方法的综合性能优于其他同类方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号