首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The enzyme steroid 5 alpha-reductase (EC 1.3.99.5) is a component of an intercellular signaling pathway that determines cell fate in the primordium of the mammalian reproductive tract. During male phenotypic sexual differentiation, the dihydrotestosterone product of this enzyme binds to the androgen receptor and initiates development of the external genitalia and prostate. Genes encoding two isozymes of steroid 5 alpha-reductase with different biochemical properties and tissue distributions have recently been isolated. In the current study, we utilize in situ hybridization analysis to determine cell-type-specific expression patterns of the 5 alpha-reductase isozyme mRNAs in two androgen target tissues (regenerating ventral prostate and epididymis) and a peripheral tissue (liver). In regenerating ventral prostate, the type 1 mRNA is expressed in basal epithelial cells whereas expression of the type 2 mRNA is largely confined to stromal cells. These results were confirmed by immunohistochemical analysis and are consistent with distinct roles played by the isozymes in the prostate. In the epididymis, both 5 alpha-reductase isozyme mRNAs are expressed in epithelial cells. Only the type 1 mRNA is present in the liver. This mRNA is distributed in a striking spatial gradient extending from hepatocytes surrounding the portal triad (high expression) to those surrounding the central vein (low to absent expression). These findings demonstrate cell-type-specific expression of the steroid 5 alpha-reductase isozymes and underscore their distinct and overlapping functions in androgen physiology.  相似文献   

7.
8.
In diapausing eggs of the silkworm Bombyx mori, embryonic cells are arrested at G2 phase. The ability to undertake cell division is resumed in the course of diapause termination caused by such a treatment as acclimation to 5 degrees C. As an initial trial to investigate the relationship between diapause and embryonic cell cycling, we have cloned and sequenced two Bombyx cDNAs encoding two distinct cdc2-related Ser/Thr protein kinases. One (Bm cdc2) encoded a 37.0 kDa protein which had all of the domains characteristic of other Cdc2 kinase. The other (Bcdrk) encoded a 45.1 kDa protein that was most similar to Drosophila and human cdc2-related protein kinases (Dcdrk protein and PISSRLE kinase). Northern blot analysis was carried out to examine levels of Bm cdc2 and Bcdrk mRNA during embryogenesis of non-diapause eggs. The result demonstrated that the mRNA level of Bm cdc2 appeared to correspond to the activity of nuclear/cellular division in non-diapause eggs, and that the developmental profile in the level of Bcdrk mRNA was somewhat different from that of Bm cdc2 mRNA.  相似文献   

9.
10.
The 220 nucleotide 5'non-coding region (5'NCR) of the human immunoglobulin heavy chain binding protein (BiP) mRNA contains an internal ribosome entry site (IRES) that mediates the translation of the second cistron in a dicistronic mRNA in cultured mammalian cells. In this study, experiments are presented that locate the IRES immediately upstream of the start-site AUG codon in the BiP mRNA. Furthermore, crosslinking of thiouridine-labeled BiP IRES-containing RNA to cellular proteins identified the specific binding of two proteins, p60 and p95, to the 3'half of the BiP 5'NCR. Interestingly, both p60 and p95 bound also specifically to several viral IRES elements. This correlation suggests that p60 and p95 could have roles in internal initiation of cellular and viral IRES elements.  相似文献   

11.
12.
Our current knowledge of mammalian forebrain development is meagre. The comparatively few relevant anatomical landmarks are, however, being supplemented by gene expression studies which are able to identify subsets of anatomical structures. We previously described cloning, subchromosomal localization and preliminary structural characterization of the human WNT8B gene, the first mammalian Wnt8b gene to be reported. Wnt genes encode intercellular signalling molecules which play a variety of critical roles in early development, including, in several cases, a presumed role in brain development. In the current report we present the full-length cDNA sequence and genomic organization of the human Wnt8b gene and report studies of expression of the Wnt8b gene in human and mouse embryos. The human and mouse expression patterns appeared identical and were restricted to the developing brain, with the great majority of expression being found in the developing forebrain. In the latter case expression was confined to the germinative neuroepithelium of three sharply delimited regions: the dorsomedial wall of the telencephalic ventricles (which includes the developing hippocampus), a discrete region of the dorsal thalamus and the mammillary and retromammillary regions of the posterior hypothalamus. Expression in the developing hippocampus may suggest a role for WNT8B in patterning of this region and subchromosomal localization of the human gene to 10q24 may suggest it as a candidate gene for partial epilepsy in families where the disease has been linked to markers in this region.  相似文献   

13.
The Wnts can be classified into two classes based on their ability to transform cells. The Wnt5a class can antagonize the effects of transforming Wnts partly through effects on cell migration. To understand the mechanisms of regulation of Wnt5a, we investigated its expression in human normal and breast cancer cell lines. Elevation of Wnt5a in HB2, a normal breast epithelial cell line, was linearly correlated with cell density, but this did not occur in cancer cell lines. We examined intracellular events responsible for the regulation of Wnt5a by cell to cell contacts, using various metabolic agents known to affect signal transduction pathways. Agents that selectively blocked protein kinase C (calphostin C) or protein tyrosine kinases (genistein) reduced the level of Wnt5a expression markedly. Protein kinase C activation by phorbol 12-myristate 13-acetate up-regulated Wnt5a partly through prolongation of Wnt5a mRNA half-life. Cytoskeleton reorganization following cytochalasin D treatment caused an induction of Wnt5a, which was associated with changes in cell morphology. Calphostin C did not block these effects, showing that protein kinase C is acting upstream of cytoskeletal modulation. However, the cancer cell lines treated with cytochalasin D showed no changes in cell morphology or Wnt5a induction, suggesting disruption of this regulatory pathway in cancer.  相似文献   

14.
15.
16.
The Wnt genes, encoding structurally-related secreted glycoproteins, are implicated in mammary carcinogenesis induced by mouse mammary tumor virus. In search of the Wnt gene(s) expressed in human gastric cancer, a WTGC1 cDNA fragment sharing 66.9% amino-acid homology with human and mouse Wnt-2 was isolated by degenerate polymerase chain reaction. The human gene corresponding to WTGC1 was designated as Wnt-13 and overlapping Wnt-13 cDNAs were cloned. Nucleotide sequence analysis indicated that the Wnt-13 gene encodes the protein of 372 amino acids, including a signal peptide, two potential N-glycosylation sites and 24 cystein residues highly conserved among members of the Wnt gene family. The Wnt-13 mRNA of 2.5 kb in size was detected in heart, brain, placenta, lung, prostate, testis, ovary, small intestine and colon of adult human and also in brain, lung and kidney of fetal human. Among various cancer cell lines, the Wnt-13 mRNA was detected in HeLa (cervical cancer), MKN28 and MKN74 (gastric cancer). The Wnt-13 gene has been mapped to human chromosome 1p13. These results suggest that the Wnt-13 gene may be involved in normal human development or differentiation as well as in human carcinogenesis.  相似文献   

17.
High-affinity binding of a set of proteins with specificity for the 5' untranslated region (UTR) of the Chlamydomonas reinhardtii chloroplast psbA mRNA correlates with light-regulated translational activation of this message. We have isolated a cDNA encoding the main psbA RNA binding protein, RB47, and identified this protein as a member of the poly(A) binding protein family. Poly(A) binding proteins are a family of eukaryotic, cytoplasmic proteins thought to bind poly(A) tails of mRNAs and play a role in translational regulation. In vitro translation of RNA transcribed from the RB47 cDNA produces a precursor protein that is efficiently transported into the chloroplast and processed to the mature 47-kDa protein. RB47 expressed and purified from Escherichia coli binds to the psbA 5' UTR with similar specificity and affinity as RB47 isolated from C. reinhardtii chloroplasts. The identification of a normally cytoplasmic translation factor in the chloroplast suggests that the prokaryotic-like chloroplast translation machinery utilizes a eukaryotic-like initiation factor to regulate the translation of a key chloroplast mRNA. These data also suggest that poly(A) binding proteins may play a wider role in translation regulation than previously appreciated.  相似文献   

18.
19.
The Wnt family of secreted signaling proteins are implicated in regulating morphogenesis and tissue patterning in a wide variety of organ systems. Several Wnt genes are expressed in the developing limbs and head, implying roles in skeletal development. To explore these functions, we have used retroviral gene transfer to express Wnt-1 ectopically in the limb buds and craniofacial region of chick embryos. Infection of wing buds at stage 17 and tissues in the head at stage 10 resulted in skeletal abnormalities whose most consistent defects suggested a localized failure of cartilage formation. To test this hypothesis, we infected micromass cultures of prechondrogenic mesenchyme in vitro and found that expression of Wnt-1 caused a severe block in chondrogenesis. Wnt-7a, a gene endogenously expressed in the limb and facial ectoderm, had a similar inhibitory effect. Further analysis of this phenomenon in vitro showed that Wnt-1 and Wnt-7a had mitogenic effects only in early prechondrogenic mesenchyme, that cell aggregation and formation of the prechondrogenic blastema occurred normally, and that the block to differentiation was at the late-blastema/early-chondroblast stage. These results indicate that Wnt signals can have specific inhibitory effects on cytodifferentiation and suggest that one function of endogenous Wnt proteins in the limbs and face may be to influence skeletal morphology by localized inhibition of chondrogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号