首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱勇  吴波 《遥感信息》2016,(4):9-15
针对当前高光谱影像稀疏分类模型中光谱重构方法单一性的问题,该文将稀疏分类模型中光谱的线性重构理解为光谱间的相似性度量,进而引入其他相似性测度指标,提出多相似测度稀疏表示的高光谱影像分类模型,并给出模型的统一解算方法——一般正交匹配追踪算法;随后,考虑地物空间连续性和一致性,将多相似测度稀疏分类模型扩展到空间联合的多相似测度稀疏分类模型,提出了一般联合匹配追踪算法;最后,利用两幅标准高光谱影像数据验证了所提出的多相似测度稀疏分类模型对于高光谱影像分类的有效性和实用性。  相似文献   

2.
针对高光谱影像中地物的尺度复杂多样,并且存在“同物异谱、同谱异物”现象,给影像的解译和分类带来了困难,以及高光谱影像维度过高容易造成分类中的维数灾难等难题,提出了一种结合超像素的改进二维奇异谱分析(two-dimensional singular spectrum analysis combining with superpixels,S2DSSA),与局部Fisher判别分析(local Fisher discriminant analysis,LFDA)相融合,共同提取影像的光谱-空间特征,并使用支持向量机(support vector machine,SVM)来进行分类,记为S2DSSA-LFDA-SVM的方法。超像素2DSSA将2DSSA作用于每个构造的超像素规则区域,能够自适应地提取地物的空间特征。在其基础上,LFDA进一步挖掘光谱维度的流形结构,实现光谱特征提取和降维。实验结果证明,在两个经典高光谱数据集上,所提出方法的总体精度相比于原始数据分别提升了31.7%和12.9%,相比于其他先进的光谱-空间分类算法有2%~6%不同程度的提升。  相似文献   

3.
4.
黄鸿  唐玉枭  段宇乐 《自动化学报》2022,48(10):2496-2507
大量维数约简(Dimensionality reducion, DR)方法表明保持数据间稀疏特性的同时,确保几何结构的保持能更有效提取出具有鉴别性的特征,为此本文提出一种联合局部几何近邻结构和局部稀疏流形的维数约简方法.该方法首先通过局部线性嵌入方法重构每个样本以保持数据的局部线性关系,同时计算样本邻域内的局部稀疏流形结构,在此基础上通过图嵌入框架保持数据的局部几何近邻结构和稀疏结构,最后在低维嵌入空间中使类内数据尽可能聚集,提取低维鉴别特征,从而提升地物分类性能.在Indian Pines和PaviaU高光谱数据集上的实验结果表明,本文方法相较于传统维数约简方法能明显提高地物的分类性能,总体分类可达到83.02%和91.20%,有利于实际应用.  相似文献   

5.
徐佳庆  万文  吕启 《计算机科学》2018,45(9):288-293
高光谱遥感技术是当前遥感领域的前沿技术,将稀疏编码应用于高光谱遥感图像处理是近年来高光谱信息处理的一个热点研究方向。以提升高光谱遥感图像分类准确度为目标,提出一种基于二阶矩空谱联合稀疏编码的遥感图像分类方法。首先从各地物参考数据中选取训练样本,通过学习构造得到字典,然后在训练得到的字典的基础上通过稀疏编码获得每个像元的稀疏系数,之后将稀疏系数作为分类器的输入,通过分类器的分类判决得到最终的分类结果。利用北京市朝阳地区的天宫一号可见近红外高光谱遥感图像数据和KSC高光谱数据,将该方法与支持向量机(SVM)、基于光谱维信息的稀疏编码以及一阶矩空谱联合稀疏编码等方法进行了比较。实验结果表明,提出的分类方法较其他几种方法可以取得更好的分类效果,在天宫一号和KSC数据上的总体分类精度分别可达到95.74%和96.84%,Kappa系数分别可达到0.9476和0.9646。  相似文献   

6.
谐波分析光谱角制图高光谱影像分类   总被引:2,自引:1,他引:1       下载免费PDF全文
目的 针对光谱角制图(SAM)分类算法对高光谱像元光谱曲线的局部特征和其辐射强度不敏感,而且易受噪声和维数灾难影响,致使分类效率低和精度较差等缺陷,将谐波分析(HA)技术引入到SAM高光谱影像分类中,提出一种基于谐波分析的光谱角制图(HA-SAM)高光谱影像分类算法.方法 利用HA技术将高光谱影像从光谱维变换到能量谱特征维空间,并提取低次谐波分量及特征系数(谐波余项、相位和振幅),用特征系数组成的向量代替光谱向量,对高光谱影像进行SAM分类.结果 将SAM和HA-SAM同时应用于EO-1卫星的Hyperion高光谱影像分类,通过对比和分析,验证了HA-SAM的优越性,再选择AVIRIS(airborne visible infrared imaging spectrometer)高光谱影像对HA-SAM进行验证,结果表明该算法具有较强的普适性.结论 HA-SAM提高了传统SAM高光谱影像分类的效率和精度,而且适用性较强具有良好的应用前景.  相似文献   

7.
卢佳  保文星 《计算机工程》2019,45(1):246-252
针对高光谱图像分类中存在的空间信息与光谱信息融合问题,提出一种基于独立空谱残差融合的联合稀疏表示高光谱图像分类算法。使用类独立的光谱角初分类图像,获得像元初始标记后按特定条件进行筛选再构造像元邻域空间。提取图像的全局空间信息,并将其引入到空谱联合稀疏表示模型中,使用单独的光谱信息字典与空间信息字典分别进行图像光谱与空间的联合稀疏表示残差计算。在此基础上,使用残差融合算法确定图像类别。实验结果表明,相对SVM、KNN等算法,该算法能够提升高光谱图像的分类精度,且分类结果更稳定。  相似文献   

8.
舒速  杨明 《计算机科学》2016,43(2):89-94
近年来,高光谱图像的分类受到了广泛的关注。许多机器学习的方法都在高光谱图像上得到了应用,如SVM、神经网络、决策树等。但光谱图像可能存在“同物异谱”和“同谱异物”的情况,这给高光谱图像的精确分类带来了一定挑战。针对该问题,提出了利用分水岭分割得到的空间信息与稀疏表示来得到更精确的分类结果。首先利用分水岭得到图像区域信息,然后以区域为单位,对每个区域的样本进行分类。在两幅图像上对该方法的有效性进行了验证,结果表明该方法优于其它一些同类方法。  相似文献   

9.
光谱角匹配分类以光谱整体相似度作为分类准则,却无法充分考虑光谱的局部细节特征,导致高光谱遥感影像的分类结果存在着较大的误差.针对此问题,提出一种联合光谱角与组合特征参数(spectral angle mapping-combination characteristic parameter,SAM-CCP)的新型高光谱影...  相似文献   

10.
目的 为了有效提高高光谱图像分类的精度,提出了双重L2稀疏编码的高光谱图像分类方法。方法 首先对高光谱图像进行预处理,充分结合图像的空间信息和光谱信息,利用像元的空间连续性,用L2稀疏编码重建图像中每个像元。针对重建的图像数据,依据L2稀疏编码的最小误差和编码系数实现分类。结果 在公开的数据库AVIRIS高光谱图像上进行验证,分类精度为99.44%,与支持向量机(SVM)、K最近邻(KNN)和L1稀疏编码方法比较,有效地提高了分类的准确性。结论 实验结果表明,提出的方法应用于高光谱图像分类具有较好的分类效果。  相似文献   

11.
针对当前高光谱遥感影像分类人工标注样本费时费力,大量未标注样本未得到有效利用以及主要利用光谱信息而忽视空间信息等问题,提出了一种空-谱信息与主动深度学习相结合的高光谱影像分类方法。首先利用主成分分析对原始影像进行降维,在此基础上提取像素的一正方形小邻域作为该像素的空间信息并结合其原始光谱信息得到空谱特征。然后,通过稀疏自编码器得到原始数据的稀疏特征表达,并通过逐层无监督学习稀疏自编码器构建深度神经网络,输出原始数据的深度特征,将其连接到softmax分类器,利用少量标记样本以监督学习的方式完成模型的精调。最后,利用主动学习算法选择最不确定性样本对其进行标注,并加入至训练样本以提高分类器的分类效果。分别对PaviaU影像和PaviaC影像进行分类实验的结果表明,该方法在少量标记样本情况下,相对于传统方法能有效地提高分类精度。  相似文献   

12.
传统高光谱遥感影像逐像素分类方法未考虑像元之间的空间关联性且泛化性能较低。形态学属性剖面是表征影像空间结构的有效方法,同时集成学习可显著提升分类算法的泛化能力。为了在高光谱影像分类中充分利用影像的空间信息并提高分类的稳定性,提出一种基于形态学属性剖面高光谱遥感影像集成学习分类方法。首先,用主成分分析和最小噪声变换进行特征提取,并借助形态学属性剖面获取影像的多重空间特征;然后用极限学习和支持向量机的方法进行分类;最后将多个分类结果以多数投票的方式集成。区别于已有集成学习方法,综合考虑了不同特征提取和不同分类方法的联合集成,并将形态学属性剖面引入其中以充分利用影像的空间信息。采用AVIRIS和ROSIS两组高光谱数据检验该方法的分类性能,实验结果表明该方法可获得高精度和高稳定性的分类结果,总体精度分别达到83.41%和95.14%。  相似文献   

13.
刘敬 《计算机科学》2011,38(12):274-277
针对高光谱遥感影像的降维问题,提出一种高光谱影像地物分类方法:direct LDA子空间法。先采用直接线性判别分析(direct linear discriminant analysis, direct LDA)进行特征提取,然后在特征子空间中采用最短距离分类器进行地物分类。机载可见光/红外成像光谱仪(airborne visible/infrared imaging spectrometer,AVIRIS)的高光谱影像识别结果表明,该方法相比LDA子空间法和原空间法,可显著降低数据维数,提高识别率。  相似文献   

14.
张成坤  韩敏 《自动化学报》2018,44(2):280-288
针对高光谱遥感影像分类过程中,高维数据引起的"维数灾难"以及空间邻域一致性信息没有得到充分利用的问题,提出一种基于边缘保持滤波(Edge-preserving filtering,EPF)的高光谱影像光谱-空间联合分类算法.该算法首先进行波段子集划分和主成分提取,构造新的低维特征集,在保存影像结构信息的前提下降低数据维度;其次利用支持向量机(Support vector machine,SVM)获得低维特征集的初始分类概率图;然后利用原始影像主成分对初始分类概率图进行边缘保持滤波,融合光谱信息和空间信息;最后根据滤波后分类概率图对应像素点值的大小确定每个像素的类别.在Indian Pines和Pavia University两组高光谱数据上进行仿真实验,相同实验条件下,本文算法都获得最高分类精度和最少的时间消耗.仿真结果表明本文算法在高光谱遥感影像分类任务中具有明显的优势.  相似文献   

15.
近年基于稀疏表示的分类框架(Sparse Representation based Classification,SRC)在计算机视觉和模式识别领域取得了巨大成功,高光谱图像解译也逐渐引入稀疏表示方法。针对基于SRC的高光谱图像分类算法随机抽取训练样本构成字典较难捕获相似类别的相对差异性信息问题,提出采用Fisher字典学习方法增强相似类训练样本的可区分性。此外,考虑到高光谱图像具有较强空间相关性的特点,设计一种简单有效的投票策略进行类别判决。大量实验表明:基于Fisher字典学习的联合投票分类方法能够较好地改善高光谱分类精度。  相似文献   

16.
针对高光谱影像支持向量机分类的预侧过程中需要花费大量计算时间的问题,提出了一种利用简约集算法提高高光谱影像分类预测效率的方法。采用径向基核函数,使用一对一构造多类支持向量机分类器,通过交叉验证网格搜索法对参数进行模型参数选择,并利用简约集算法来减少分类预测过程计算量。通过高光谱影像分类试验表明,保持支持向量机的泛化能力并不需要使用所有计算得到的支持向量,简约集算法能够在保持分类预测精度的同时,大大提高高光谱影像分类预测的速度。  相似文献   

17.
在高光谱图像分类领域中每个像素的局部邻域一旦包含来自不同类别的样本,联合稀疏表示将受邻域内字典原子与测试样本之间同谱异类的影响,严重降低分类性能.根据高光谱图像的特点,文中提出融合分层深度网络的联合稀疏表示算法.在光谱和空间特征学习之间交替提取判别性光谱信息和空间信息,构建兼具空谱特征的学习字典,用于联合稀疏表示.在分类过程中将学习字典与测试样本间的相关系数与分类误差融合并决策.在两个高光谱遥感数据集上的实验验证文中算法的有效性.  相似文献   

18.
为解决高光谱遥感影像波段众多所带来的信息丰富与“维数灾难”间的矛盾并提高分类精度,针对传统特征选择方法信息损失大的缺陷,基于EO-1 Hyperion高光谱遥感影像,采用独立分量分析(ICA)和决策树分类(DTC)方法联合运作流程,开展影像的地物分类实验研究,提出了ICA-DTC模型。首先运用ICA方法对影像进行特征提取,并以所提取的独立分量特征及其他地理辅助要素组成分类指标集;继而选择适当的指标组合和阈值设定判别规则,建立DTC模型进行影像的地物分类;最后将分类结果与传统最大似然分类法进行比对。结果显示:从分类的总体精度看,前者可达89.34%,高出后者18.8%;从单一地物的分类精度看,前者仅水体的精度略低于后者,而其他11种地物的精度都高于后者。理论分析与实验结果均表明,ICA-DTC模型可有效提高复杂地形条件下的地物分类精度。  相似文献   

19.
为了研究高光谱影像数据的维数约简和分类问题,提出了一种基于边际费希尔分析(MFA)和kNNS的高光谱遥感影像数据分类算法。该方法利用数据的类别信息,通过MFA将高光谱数据从高维观测空间投影到低维流形空间,然后利用邻域内多个近邻点的信息通过kNNS分类器对低维空间中的数据进行分类。在Urban、Washington和Indian Pine数据集上的分类识别实验表明,该方法能够较为有效地发现高维空间中数据的内蕴结构,在每类随机选取4,6,8个训练样本的情况下,该方法的总体分类精度能够比其他算法提高3.7%~8.5%,分类精度有了明显的提高。  相似文献   

20.
基于决策树的高光谱遥感影像分类方法研究   总被引:1,自引:0,他引:1  
为了验证将决策树算法用于高光谱遥感影像分类的可行性,提出了一种二叉决策树自动构建算法用于高光谱遥感影像分类.通过对高光谱遥感影像进行现场采样、对样本进行统计和训练,生成了一棵二叉决策树,从决策树中提取出分类规则,并对高光谱遥感影像进行分类.生成的决策树简单明了,分类规则易于理解,分类效率和精度都比较高,实现了高光谱遥感影像从数据降维、样本选择、样本训练、决策树生成、影像分类的“一体化”和“自动化”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号