首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
电火花成形加工过程中,极间放电在蚀除工件材料的同时,也会对工具电极带来一定程度的损耗,进而影响工件的尺寸及形状精度,降低加工效率。目前普遍采用更换电极重复加工的方式来获得最终形面,需要消耗大量的工具电极和工时。针对电火花加工的工具电极损耗展开了研究,通过系统地分析所得电极形面特征及进给方向与损耗量之间的关系,建立了实用的电极损耗预测模型。通过实验证明了该模型能准确预测工具电极形面损耗,为电火花加工的电极损耗预测提供了有效方法。  相似文献   

2.
针对电火花加工中不同放电位置产生的不同电极损耗形状,讨论了极间存在工作液、气泡、电蚀产物的情况下,火花击穿放电前阴极电场强度的分布情况,从而探究气泡对放电发生位置及电极损耗形状的影响。采用Maxwell软件进行电火花放电通道的静电场仿真,得到气泡、电蚀产物对放电发生位置的影响规律。仿真结果表明:气泡对阴极表面具有保护作用,气泡越大,离阴极表面越近,场强越低,保护作用越明显;电蚀产物对阴极场强有增强作用,且随其浓度的增加而增加;气泡周围区域电蚀产物浓度高,放电发生概率最大;静止的气泡可减少放电损耗,运动的气泡对电极损耗的影响取决于高放电概率,气泡的不同分布状态影响电极的损耗形状。  相似文献   

3.
介绍电火花加工中电极材料受到各种干扰因素的影响,干扰因素直接或间接造成了电极材料损耗,研究发现,电极材料损耗越小,加工件的精度越高,通过试验将5种电极材料在电火花加工过程中的损耗进行对比研究,确定了W-Cu合金作为电火花加工用电极材料损耗最小,加工件加工精度最高。  相似文献   

4.
电火花铣削中电极损耗及补偿的几何描述方法   总被引:1,自引:0,他引:1  
提出了电火花铣削加工的基于数学模型的电极分解加工补偿法,即通过将电火花铣削加工过程划分为两个阶段——型腔侧面轮廓加工和底面的加工,这样就简化了放电状态的检测和电极补偿运动。在分别对侧面和底面加工过程分析的基础上,建立了侧面轮廓和底面加工的电极损耗和补偿的数学模型,为电极自动在线补偿提供了理论基础。  相似文献   

5.
开发电火花成形加工工具电极损耗仿真系统,模拟加工过程中工具电极的几何形态变化,可有效预测工具电极损耗,从而在保障工件形面精度的前提下,通过合理更换工具电极实现电极成本控制和加工效率提升。现有的工具电极损耗仿真系统的计算效率较低,仅适用于微细尺寸的电极;随着工具电极尺寸的增大,仿真的时间成本迅速升高,甚至超出常规计算机的运算能力。为了预测常规尺寸的工具电极损耗,提出了采用"三角形非均匀网格+方形均匀网格"的双重网格解耦算法。方形均匀网格用于材料蚀除的计算,而三角形非均匀网格用于静电场计算和放电位置的判断。该算法有效提升了工具电极损耗仿真系统的性能与运算能力,为常规尺寸的工具电极损耗预测提供了高效、高精度的解决方法。  相似文献   

6.
电极损耗一直是阻碍电火花铣削加工在实际工业领域应用的一大壁垒.为了操控与优化电极端部损耗形状,设计了一种铜-锌-铜叠合而成的复合电极,以外部电极厚度、内部电极厚度、内外电极间隙、峰值电流和脉宽为影响因素进行L16正交试验与进一步单因素实验.结果表明,外部电极厚度、内外电极间隙是影响外部电极外缘损耗宽度的主要因素,适当减...  相似文献   

7.
多电极直接驱动的微细电火花加工技术   总被引:1,自引:0,他引:1  
介绍了目前典型的电极直接驱动的小型电火花加工机构,阐述了在小面积上利用多电极进行多孔加工的实际意义,并分析了多电极加工过程中影响加工稳定性和加工精度的因素,最后指出了多电极微细电火花加工技术的发展趋势。  相似文献   

8.
研制了一种用于微细孔电火花加工的微细电极进给与激振机构,实现了加工过程中微细电极的伺服进给、损耗自动补偿、辅助激振及高精度导向。实验研究了加工过程中电极激振的频率对加工效率、加工孔径的影响。实验结果表明,电极激振振幅为0.6μm,频率位于4.3~4.5kHz范围内时,加工效率和所加工的微细孔尺寸精度同时明显提高。  相似文献   

9.
微细电火花小孔加工过程中存在的电极损耗问题,严重影响了孔的加工精度.以单脉冲放电理论为基础,改进了微细电火花小孔加工过程的仿真模型,对工具与工件加工形状的变化过程进行了仿真研究.与实验结果相比,模型能较好地预测电极损耗及其对工件形状精度的影响,从而为进一步研究电极离线补偿提供了一种经济、可行的方法.  相似文献   

10.
在复杂型面的多轴电火花加工中,电极损耗对加工精度具有影响显著,因此,对电极损耗进行准确补偿非常重要。通过研究得出电极表面损耗与电场强度有关,并建立了电极损耗系数与电场强度之间的关系。在此基础上,提出了考虑电极运动路径的电极损耗补偿方法,并通过加工实验证明了该方法的准确性与有效性。  相似文献   

11.
不同电极电火花加工硬质合金的效率研究   总被引:3,自引:0,他引:3  
通过实验的方式对采用不同电极电火花加工技术加工硬质合金的效率进行了研究。通过调整加工过程中的脉冲宽度和开路电压,变换加工电极,探讨了不同电极材料、开路电压及脉宽加工硬质合金的加工效率的影响.  相似文献   

12.
介绍了对电火花成型加工中产生的电极损耗进行自动测量及自动补偿的方法。运用这一方法能提高零件尺寸、形状精度。同时实现了自动连续无人化的加工 ,尤其适用于单电极多型腔的加工 ,保证各个型腔尺寸一致。  相似文献   

13.
电火花成形加工过程中,工具电极的损耗是影响工件几何形状精度的主要因素之一。从工具电极的制作工艺着手,分别利用直流和脉冲电流电铸工具电被,进行了电极放电损耗试验。通过试验和SEM形貌研究分析了工艺参数对电极耐电蚀性能的影响,并用正交试验法优化了工艺参数。结果表明,脉冲电铸铜电极可降低损耗,且在一定工艺条件下脉冲电铸电极具有优异的耐电蚀性能。  相似文献   

14.
采用电熔爆加工技术进行大长径比异形深孔加工时,加工表面质量和电极损耗是影响加工效果的主要因素。采取自主开发的异形深孔加工电极,通过单因素试验法研究大长径比异形深孔加工过程中峰值电流、电源电压、电极材料、冷却液压力等工艺参数对加工表面质量和电极损耗的影响;通过正交试验的方法确定各因素影响加工表面质量的主次顺序及最佳工艺参数组合。结果表明:在电极材料为铜钨合金时,峰值电流120 A、电源电压21 V、冷却液压力6 MPa为最佳工艺参数组合。研究结果为电熔爆异形深孔实际加工中的参数选择提供了参考。  相似文献   

15.
航空发动机叶片进排气边缘的精度直接影响着飞机的气动性能。为解决电解加工叶片存在的叶缘尺寸误差问题,提出了采用成形电极曲面,以“线-线”接触方式,电火花包络加工的方法对叶片边缘进行修整,即通过共轭曲面的基本原理设计出与理论叶缘曲面互相啮合的电极曲面,当电极与叶片按照刀位轨迹进行共轭运动时,电极曲面与叶缘曲面在每一个刀位点处始终保持有且仅有一条线接触,利用该特征曲线(刀刃线)对叶缘毛胚余量进行蚀除,再利用自研的六轴电火花机床对叶片毛胚进行了边缘修整实验。实验结果表明:修整后的叶片叶缘整体尺寸误差范围为-16.4~88.5μm、电极相对体积损耗率为0.87;通过对电极曲面不同部位的损耗情况进行分析,确定了电极曲面损耗严重区域的位置以及相应的材料去除量与电极损耗的关系,为后续的电极补偿提供了依据。  相似文献   

16.
针对电火花加工中多材质电极的损耗和形状变化,在模具钢工件上开展了电火花多材质电极加工实验研究,分析了电极材料、加工极性对多材质电极损耗的影响规律,并以黄铜-模具钢电极、紫铜-铜钨合金电极为研究对象,分析了多材质电极的形状变化规律。结果表明:长度损耗小的电极材料能辅助减小同组其他材料的电极损耗,但通常其角损耗较大;加工中多材质电极结合处形成过渡曲面,当加工进入均匀损耗阶段后,过渡曲面的圆弧半径和圆心角基本恒定不变。  相似文献   

17.
研究了工作介质的氧化特性对钛合金电火花加工电极绝对损耗、相对损耗率及电极表面微观形貌的影响规律。结果表明,具有氧化特性的工作介质可在加工过程中使电极氧化,并在电极表面形成一层氧化保护膜,减小带电粒子对基体的轰击,从而降低电极绝对损耗;介质的氧化特性也会对钛合金电火花加工效率和排屑产生影响,使电极相对损耗率呈先减小、后增长、再趋于稳定的趋势;极间氧气增多能增大放电爆炸力,使电极表面微裂纹和气孔数量增多;工作介质存在一个最佳氧化性能,可使钛合金加工的电极损耗达到最佳状态。  相似文献   

18.
介绍了目前典型的电极直接驱动的小型电火花加工机构,阐述了在小面积上利用多电极进行多孔加工的实际意义,并分析了多电极加工过程中影响加工稳定性和加工精度的因素,最后指出了电极微细电火花加工技术的发展趋势。  相似文献   

19.
针对电火花电解复合加工的电极损耗问题,以模具钢为加工对象开展了电火花电解复合加工实验。分析了在不同极性和电极材料条件下,工作液浓度对电极相对损耗、电极形状变化规律及加工精度的影响。结果表明:合理控制工作液浓度能降低电极相对损耗及减小电极形状变化。  相似文献   

20.
提出了一种基于气液混合功能电极的电火花诱导烧蚀铣削加工方法,并针对Cr12与常规电火花铣削加工进行了对比试验,结果发现同等试验条件下,气液混合电火花诱导烧蚀铣削的电极体积损耗仅为1.1%,而常规电火花铣削的电极损耗为9%。针对此现象,从极间放电特性、电极端面覆盖层等因素出发,解释了电极损耗低的原因。最后,研究了不同加工参数下,气液混合烧蚀铣削电极相对损耗的工艺规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号