首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 262 毫秒
1.
以糠醛为萃取剂,采用模拟软件Aspen Plus对环己烷-苯共沸物体系的分隔壁塔萃取精馏工艺进行了模拟优化。利用单变量灵敏度分析考察了分隔壁萃取精馏塔的塔板数、回流比、溶剂比、萃取剂和原料的进料位置等因素对产品纯度及再沸器热负荷的影响。确定了最优的工艺条件:分隔壁萃取精馏塔主塔及副塔的理论板数分别为34和10,回流比分别为2和3,主塔溶剂比为2.4,原料和萃取剂的进料位置分别为第22块板和第7块板,气相分配比为0.2,侧线抽出板的位置为主塔的第31块板。与传统的萃取精馏相比,分隔壁塔萃取精馏工艺可降低能耗13.5%。  相似文献   

2.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

3.
采用分隔壁精馏塔分离裂解汽油。建立了分隔壁精馏塔小试装置,该装置主塔的理论板数57块,副塔的理论板数为16块。考察了回流比、液体分配比和侧线采出量对分离效果的影响,同时用Aspen Plus 软件对分隔壁精馏塔进行模拟。结果表明,最佳操作条件为进料速率4.7 kg/h、塔顶出料速率0.84 kg/h、侧线采出速率3.0 kg/h、液体分配比3、回流比5.5。在此条件下,塔顶C5的质量分数达到99.60%,侧线C6~C8的质量分数达到99.76%,实验结果与模拟结果基本一致。采用分隔壁精馏塔比常规分离流程可使再沸器能耗降低20.8 %。  相似文献   

4.
改进了乙烯装置顺序分离流程,将传统流程中的脱甲烷塔和脱乙烷塔集成为1个分壁精馏塔,实现C1、C2和C3+的分离,再分别经脱丙烷塔、炔烃选择加氢器、乙烯精馏塔、丙烯精馏塔等,得到聚合级的乙烯和丙烯产品。利用Aspen对分壁精馏塔进行等效模拟,并对新工艺进行全流程模拟。模拟结果表明,分壁精馏塔塔板数为43,进料在第17块板,侧线采出在第13块板,回流比2.6,隔板处于第7到第29块板之间,塔顶采出物中C1质量分数为99.94%,中间侧线采出物中C2的质量分数为99.97%,塔底釜液中C3+的质量分数为100%,实现了C1、C2和C3+的清晰分割。采用该新工艺可以得到质量分数分别为99.97%和99.98%的聚合级乙烯和丙烯产品,因此,建立的基于分壁精馏塔的乙烯装置顺序分离新工艺在技术上可行。  相似文献   

5.
分隔壁精馏塔分离三组分烷烃混合物的研究   总被引:2,自引:2,他引:0  
利用自制的分隔壁精馏塔小试装置对正己烷、正庚烷和辛烷三组分混合物的分离进行了实验。考察了进入侧线采出段的液体流量与进入预分离段的液体流量之比(简称液体分配比)、进料位置和出料位置对分离效果的影响;并与带侧线采出的精馏塔进行比较。实验结果表明,在液体分配比为1、进料位置为分隔壁中间、出料位置为分隔壁中间时,塔顶馏出物中正己烷的质量分数可达99.72%,侧线采出物中正庚烷的质量分数可达95.48%,塔釜液中辛烷的质量分数可达96.80%;采用分隔壁精馏塔比常规带侧线精馏塔可得到更高纯度的中间产物和塔釜产物;采用Aspen Plus流程软件对分隔壁精馏塔模拟的结果与实验结果基本一致。  相似文献   

6.
采用Aspen Plus模拟软件,对乙苯脱氢装置的反应产物进行了全流程的模拟分离,并对初分塔、苯乙烯塔、脱乙苯塔和苯回收塔的关键参数进行了优化设计.结果表明:初分塔的塔板数为80,最佳进料位置为第36块理论板,塔顶采出量为3 764 kg/h,回流比为7.7;苯乙烯塔的塔板数为14,最佳的进料位置为第6块理论板,塔顶采...  相似文献   

7.
分壁精馏塔(Agrawal divided-wall column,ADWC)内部有上、下2个分隔壁,可实现四组分混合物的高纯度分离。建立了分离苯(Benzene,B)、甲苯(Toluene,T)、二甲苯(o-Xylene,X)和均三甲苯(1,3,5-Trimethylbenzene,H)的ADWC稳态严格精馏模型,经济优化后得到最优的塔体结构和操作参数。与常规三塔流程、Kaibel分壁精馏塔和强化Petlyuk分壁精馏塔进行能耗优势对比。结果表明,ADWC结构具有能耗和经济优势。与Kaibel分壁精馏塔相比,ADWC可节约10%左右的能耗和投资;与强化Petlyuk分壁精馏塔相比,ADWC结构简单并可在较少分离区域完成混合物的高效分离。稳态下全塔液相分布表明,在预分馏段内需实现甲苯和均三甲苯的清晰分割,中间塔段需要实现苯和二甲苯的清晰分割,主塔的上、中、下段分别完成苯和甲苯、甲苯和二甲苯、二甲苯和均三甲苯的清晰分割,在预分馏段和中间塔的底部二甲苯和甲苯略有返混现象。基于不同分气比下ADWC能耗和侧线组成分析结果,在Aspen Dynamic中建立了5×5的组分控制结构,该结构在发生±20%的流量和进料组成波动时,具有较优的控制效果。  相似文献   

8.
分隔壁精馏塔分离裂解汽油的模拟   总被引:1,自引:0,他引:1  
提出了分离裂解汽油新工艺,用分隔壁精馏塔(DWC)替代传统工艺中的三个精馏塔。利用AspenPlus模拟软件对DWC工艺和传统精馏工艺进行了模拟,考察了回流比、分配比、侧线采出量等工艺条件对分离效果的影响,并对两种工艺进行了比较。模拟结果表明,DWC的最佳操作条件为:主塔理论板数为56块,副塔为12块板,回流比为7,液体分配比为3,气体分配比为2,同时需严格控制侧线采出流量。在此操作条件下,分隔壁精馏工艺比传统三塔精馏工艺节能26.89%。  相似文献   

9.
采用Aspen Plus软件对二氯甲烷废溶剂回收分离过程进行模拟研究,确定了萃取塔(T1)的理论塔板数、萃取剂水的用量、二氯甲烷精馏塔(T2)的进料塔板位置、回流比R及理论板数等。通过萃取和精馏分离提纯了二氯甲烷废溶剂中的二氯甲烷,在工艺参数:萃取塔(T1)的理论塔板数为8,萃取剂水与二氯甲烷废溶剂质量比为0.5,二氯甲烷精馏塔(T2)理论塔板数为20,实际塔板数取30为佳,二氯甲烷溶剂从16~18块塔板进料,侧线采出二氯甲烷,回流比R为1.5时,塔顶产品二氯甲烷的质量分数≥99.70%,水分≤0.15%。  相似文献   

10.
提出了一种新的单塔萃取精馏精制芳烃和非芳烃的新工艺,新工艺采用分隔壁萃取精馏塔替代常规萃取精馏流程的萃取精馏塔及溶剂回收塔,不仅节省了设备投资,而且降低了总能耗。利用ASPENPLUS模拟软件,对分隔壁萃取精馏塔及常规萃取流程进行了模拟,考察了溶剂比、回流比及分配比对分隔壁萃取精馏塔的影响,并对两种流程进行了比较,结果表明,分隔壁萃取精馏塔的最佳操作条件为:塔板数为41块,侧线精馏段的板数为10块,回流比为1,溶剂比为3.5,分配比为1.25。在此条件下,分隔壁萃取精馏塔比常规的两塔萃取精馏流程节能25.2%。  相似文献   

11.
综述了苯、甲苯、二甲苯(BTX)分离的普通流程、热泵流程(包括常压直接序列热泵流程、常压间接序列热泵流程)和热集成流程。提出了新的BTX热耦分离流程,它由预分塔和主塔构成,通过预分塔使轻、重关键组分分离,主塔则对预分产物进一步分离,得到目的产品;并提出相应热耦流程的模拟方法。使用流程模拟软件对常压直接序列热泵流程、常压间接序列热泵流程、热集成流程、热耦合流程进行了全流程模拟设计,在模拟数据的基础上,对各流程进行了有效能分析。常压热泵流程由于压缩机功耗大,损在109 GJ/h左右;热集成流程换热物流温位匹配合理,泵及压缩机损也小,在90.1 GJ/h左右;热耦合流程再沸炉内传热损较大,主塔塔顶汽不能用于加热工艺物流,冷却损大,在103 GJ/h左右。最终确定热集成流程是BTX分离过程的能量集成最优流程。  相似文献   

12.
The salt-containing extractive distillation column and the salt-containing agent recovery column for the 2-propanol/water/ethanediol/KAc system were simulated by the NRTL model and the modified Rose Relaxation method. The simulation results showed that prediction of the salt effect in vapor-liquid equilibrium and the correlation method (TDCM) of NRTL parameters were suitable for the said system. Four different distillation technology processes were investigated; the results showed that the salt-containing extractive distillation process was the best one. The simulating design of the extractive distillation column was performed under the conditions of different total stage number, feeding location, reflux ratio, amount of mixed agent and concentration of KAc. The results showed that such factors as 17 stages, a feeding location at the 9th stage, a reflux ratio of 1.2, and a mixed agent feeding rate of 1.141 kmol/h, might be the best suited operating conditions. The simulating design was also done for the column for recovering the salt-containing agent. The simulation method of the salt-containing extractive distillation is simple and effective in this work.  相似文献   

13.
以某炼油厂燃料气回收液化石油气(Liquefied Petroleum Gas,LPG)为对象,分别对3种LPG回收流程进行了研究。在稳态模拟的基础上,以年总费用为优化目标,优化了各流程的主要工艺参数。结果表明,隔壁塔流程较另外两种流程的年总费用分别降低37.66%和11.35%,表现出较大的经济优势。此外,对炼油厂燃料气回收LPG隔壁塔流程的动态特性进行了研究,提出的四点温度控制结构能够有效地抵抗进料扰动,具有良好的可控性。由此可见,隔壁塔在炼油厂燃料气回收LPG工艺中具有非常高的应用潜力。  相似文献   

14.
采用分隔壁萃取精馏塔,研究了一塔式分离苯-环己烷体系。选用环丁砜作为萃取剂,通过加入助溶剂邻二甲苯获得合适的塔釜温度,有效防止环丁砜受热分解。考察了萃取剂/进料质量比、两侧回流比、萃取剂进料温度、助溶剂含量等因素对该分离装置分离效果的影响。结果表明,在主塔回流比为1、苯精馏侧回流比为2.5、萃取剂/进料质量比为6.8、溶剂进料温度为75℃时,环己烷产品中环己烷质量分数为97.15%、苯产品中苯质量分数为96.23%。获得的分隔壁萃取精馏塔的相关参数为进一步改进装置提供了依据。由于采用一塔式分离苯-环己烷,降低了设备投资;与常规萃取精馏相比,节能13.4%。  相似文献   

15.
反应精馏隔壁塔水解醋酸甲酯的控制研究   总被引:1,自引:1,他引:0  
在稳态模拟的基础上,研究了醋酸甲酯水解的反应精馏隔壁塔的控制策略。首先利用Aspen Plus软件模拟并优化了该工艺,得到最优操作条件;通过稳态敏感性分析得到各塔板温度的相对增益,由非方相对增益矩阵法选择控制变量及相对增益矩阵法确定操纵变量与被控变量的控制关系,以降低系统的耦合程度;采用继电反馈法整定比例积分控制器参数后,最终在AspenDynamics平台上对动态控制进行了模拟。模拟结果表明,通过3个温度控制回路(水进料量控制主塔第28块塔板温度、主塔塔底再沸器热负荷控制主塔第21块塔板温度、侧线塔塔顶回流量控制侧线塔第11块塔板温度),可较好地控制醋酸甲酯水解的化学计量平衡,且产品质量要求与设计值之间的偏差不大于0.01%。  相似文献   

16.
针对流程模拟系统无法适应蒸馏塔的多路进料结构的问题,提出了初馏塔-常压蒸馏塔联合校正法。该方法的关键是虚拟物料的处理、虚拟进料点的选择以及双塔联合校正。实际应用结果表明,该方法在保证常压蒸馏塔外特有足够的模拟精度的前提下,有效地解决了基于Petrofine软件的流程模拟系统中常压蒸馏塔进料数目受限制的问题。  相似文献   

17.
针对液 液萃取的异丙醇 正丁醇-乙醇 水(IBE H2O)体系,采用共沸精馏方法分离其中的水;并利用化工软件Aspen Plus对发酵产物IBE H2O体系的分离提纯进行流程模拟,设计了精馏流程,筛选了共沸剂,考察了共沸剂的适宜用量,优化了操作条件,得到了精馏流程最优、最经济的操作条件。结果表明:IBE H2O体系分离提纯优选的共沸剂为甲基叔丁基醚(MTBE);最佳精馏流程的共沸剂循环量为58 kmol/h,理论塔板总数为15,进料位置在塔上部第3块塔板处;提纯得到混合醇产品中IBE的摩尔分数可达到99.6%;且此时共沸精馏流程经济最优。  相似文献   

18.
利用PRO/Ⅱ化工流程模拟计算软件,对乙二醇分离过程中的乙醇塔、中杂塔和乙二醇产品塔进行了模拟计算分析,三塔均采用NRTL热力学计算模型,并对热力学参数进行修正,通过计算各塔理论板数、进料位置和回流比等操作参数,模拟优化出最佳工艺条件。结果表明,三塔流程工艺流程操作合理,灵活性强,可分离得到符合质量要求的乙二醇,在一定...  相似文献   

19.
以甘油与乙二醇的混合溶剂(摩尔比为6∶1)为萃取剂,分别采用常规萃取精馏(CED)、减压萃取精馏(LPED)、隔壁塔萃取精馏(EDWC)和结合预浓缩段和溶剂回收段的萃取精馏(CPRED)等方法对乙腈 水体系进行精馏分离;并利用Aspen Plus软件对4种工艺流程进行稳态模拟,以年总费用(TAC)最小为目标,采用序贯模块法对各流程的工艺参数进行优化以获得最优结构参数。结果表明:与常规萃取精馏流程的TAC相比,减压萃取精馏的TAC下降了392%,结合预浓缩段和溶剂回收段的萃取精馏的TAC下降了10.57%,而隔壁塔萃取精馏的TAC增加了1003%;从环保角度分析,结合预浓缩段和溶剂回收段合成的萃取精馏流程CO2排放量最少,而隔壁塔萃取精馏流程CO2排放量最多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号