首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
燃料油深度加氢脱硫催化剂的研究进展   总被引:7,自引:6,他引:1  
综述了燃料油(主要是汽油和柴油)深度加氢脱硫催化剂的研究进展。汽油精制的主要问题是在深度加氢脱硫的同时减少由于烯烃饱和造成的辛烷值损失;柴油深度加氢脱硫主要是脱除其中的难脱除硫化物及稠环芳烃加氢饱和。TiO_2和 ZrO_2等载体负载的金属硫化物催化剂比传统加氢脱硫催化剂的活性高。助剂 P 和 F 能减弱载体-金属间相互作用,在 Co(Ni)-Mo(W)/γ-Al_2O_3催化剂中生成更多的高活性Ⅱ型中心。螯合剂能延迟 Co 的硫化,有利于 Co-Mo-S 活性中心的生成。过渡金属磷化物催化剂表现出更高的脱硫、脱氮活性及良好的活性稳定性,它的主要缺点是金属磷化物的分散度较差,活性中心数目较少。过渡金属碳化物和氮化物催化剂对脱硫、脱氮的初活性较高,但使用后表面金属被硫化,催化活性下降。  相似文献   

2.
以硫化态Co-Mo/γ-Al_2O_3、Ni-Mo-W/γ-Al_2O_3为催化剂,选用催化裂化柴油为原料,考察反应气氛中NH_3对多环芳烃选择性加氢饱和的影响。试验结果表明:NH_3的引入使多环芳烃饱和率略有下降,并且对不同类型催化剂的单环芳烃选择性存在不同的影响;在相同多环芳烃饱和率下,对于Ni-Mo-W/γ-Al_2O_3催化剂,NH_3浓度的提高可促进单环芳烃选择性的提高,而对加氢脱氮反应基本无影响;对于Co-Mo/γ-Al_2O_3催化剂,NH_3浓度的提高对单环芳烃的选择性基本无影响,但显著抑制了加氢脱氮反应。因此,对Ni-Mo-W/γ-Al_2O_3催化剂,可采取引入NH_3的方式来达到提高单环芳烃选择性的目的。  相似文献   

3.
以催化裂化柴油为原料,采用Ni-Mo-W/γ-Al_2O_3与Co-Mo/γ-Al_2O_3加氢精制催化剂,在中型加氢实验装置上,考察加氢工艺参数对两种类型催化剂多环芳烃选择性加氢饱和反应的影响。结果表明:在相同反应温度条件下,Ni-Mo-W型的多环芳烃饱和活性优于Co-Mo型的多环芳烃饱和活性;Co-Mo型的单环芳烃选择性与单环芳烃产率优于Ni-Mo-W型的单环芳烃选择性与单环芳烃产率;并且Ni-Mo-W型催化剂多环芳烃选择性加氢饱和性能更容易受到工艺参数的影响。为实现高多环芳烃饱和率下单环芳烃的产率最大化,芳烃饱和性能较高的Ni-Mo-W型催化剂适合选择较低的反应温度,芳烃饱和性能较低的Co-Mo型催化剂适合选择中等的反应温度和较高的反应压力。  相似文献   

4.
Mo/Tio_2-Al_2O_3催化剂加氢脱硫性能的研究   总被引:5,自引:1,他引:4  
在中压反应装置上以环己烷70w%、环己烯25w%和噻吩5w%混合液为反应物,考察了Mo/TiO_2-Al_2O_3催化剂的噻吩加氢脱硫(HDS)和环已烯加氢(HYD)活性。催化剂采用三种预处理条件:(1)400℃H_2S/H_2硫化;(2)500℃H_2还原;(3)不处理。结果表明,预硫化处理的催化剂活性最高,且HYD/HDS大于1。Mo/TiO_2-Al_2O_3的HYD和HDS的活性总是比Mo/Al_2O_2高。当TiO_2的含量超过单分子层时,不经任何处理的Mo/TiO_2-Al_2O_3催化剂就具有很高的HDS和HYD性能,表明TiO_2-Al_2O_3载体有显著改善Mo催化剂加氢脱硫性能的作用。  相似文献   

5.
以尿素燃烧法制备了Co-Mo/Al2O3-TiO2催化剂,采用低温N2吸附、HRTEM、XPS等方法对催化剂的表面结构和电子状态进行了表征,在微型固定床反应器上对Co-Mo/Al2O3-TiO2催化剂的活性进行了评价。考察了尿素添加量、TiO2添加量、n(Co)∶n(Mo)、反应温度和液态空速(LHSV)等对催化剂结构和加氢脱硫活性的影响。实验结果表明,采用n(尿素)∶n(Co+Mo)=10.0时制备的Co-Mo/Al2O3-TiO2催化剂表面负载的金属组分密度大,孔径大,对二苯并噻吩的脱除率达94%以上;添加TiO2降低了Mo与载体的相互作用;在Al2O3-TiO2载体中TiO2的质量分数为20%,n(Co)∶n(Mo)=0.35~0.55、反应温度300~380℃、LHSV=3~6h-1的条件下,Co-Mo/Al2O3-TiO2催化剂的加氢脱硫活性最好。  相似文献   

6.
利用活性白土脱除原料中的氮化物,得到硫含量相同而氮含量不同的3种柴油原料,以Ni-Mo-W/γ-Al_2O_3和Co-Mo/γ-Al_2O_3为催化剂,利用中型固定床加氢装置考察氮化物对超深度加氢脱硫反应的影响。实验结果表明,在真实油品复杂体系中,氮化物对加氢脱硫反应存在明显的抑制作用,并且随脱硫深度的增加,氮化物的影响越明显;在原料氮含量较低的情况下,Ni-Mo-W型催化剂上加氢脱硫反应的表观活化能明显低于Co-Mo型催化剂,加氢脱硫反应的活性显著高于Co-Mo型催化剂,并且随LHSV的增加,两者相差越大。采用氮含量为6.7μg/g的原料油C时,在反应温度355℃、氢分压6.4 MPa、LHSV=6.0 h~(-1)、氢油体积比300的条件下,在Ni-Mo-W型催化剂上的产品硫含量为10.0μg/g。  相似文献   

7.
以Mo和Ni为活性组分、γ-Al_2O_3为载体,采用具有不同官能团的有机物制备了MoNiP/Al_2O_3催化剂。通过H_2-TPR、XRD、原位Raman光谱、CO吸附红外光谱、XPS及HRTEM等方法表征了催化剂的组成和结构。以蜡油为原料,在反应压力11.0 MPa、氢油体积比700∶1、反应温度370℃、液态空速1.0 h~(-1)的条件下评价了催化剂的加氢活性。实验结果表明,添加具有不同官能团的有机物,特别是氨类有机物,改善了载体氧化铝表面羟基基团的分布,促使更多的Mo物种以八面体配位多核聚钼酸形态存在,并有效削弱了载体与活性金属之间的强相互作用,提高了Mo物种的分散度与硫化度,使催化剂形成更多的"Mo-Ni-S"加氢活性相,提高了催化剂的加氢活性。添加氨类有机物的催化剂对蜡油具有更高的芳烃饱和活性、加氢脱硫和加氢脱氮活性。  相似文献   

8.
以Mo和Ni为活性组分、γ-Al_2O_3为载体,采用具有不同官能团的有机物制备了MoNiP/Al_2O_3催化剂。通过H_2-TPR、XRD、原位Raman光谱、CO吸附红外光谱、XPS及HRTEM等方法表征了催化剂的组成和结构。以蜡油为原料,在反应压力11.0 MPa、氢油体积比700∶1、反应温度370℃、液态空速1.0 h^(-1)的条件下评价了催化剂的加氢活性。实验结果表明,添加具有不同官能团的有机物,特别是氨类有机物,改善了载体氧化铝表面羟基基团的分布,促使更多的Mo物种以八面体配位多核聚钼酸形态存在,并有效削弱了载体与活性金属之间的强相互作用,提高了Mo物种的分散度与硫化度,使催化剂形成更多的"Mo-Ni-S"加氢活性相,提高了催化剂的加氢活性。添加氨类有机物的催化剂对蜡油具有更高的芳烃饱和活性、加氢脱硫和加氢脱氮活性。  相似文献   

9.
用全硅MCM-41共浸渍法担载Co-Mo制备的催化剂,其金属担载量ω(MoO3)=20%。考察了该催化剂对二苯并噻吩(DBT)、4-甲基二苯并噻吩(4-MDBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和高硫直馏柴油加氢脱硫反应的活性,并与日本某深度加氢脱硫催化剂(DHDS)作了比较。结果表明,所研制的催化剂对DBT、4-MDBT、4,6-DMDBT和高硫直馏柴油(ωS=2.83%)均具有很高的加氢脱硫活性,高于DHDS催化剂的活性。MCM-41担载的催化剂最佳Co/Mo原子比为0.75,高于以γ-Al2O3作载体的市场上广泛应用的Co-Mo催化剂,这可能是活性组分在表面高度分散的结果。在DBT的加氢脱硫反应中,联苯(BP)的选择性远高于环己烷基苯(CHB)的选择性,说明Co-Mo/MCM-41催化的加氢脱硫反应中,氢解脱硫反应占主导地位。与Ni—Mo/MCM-41催化的加氢脱硫反应过程相似,加氢脱硫反应中生成的CHB稳定性较低,会进一步分解为苯和环己烷。由TPR谱图可知,表面的Mo和Co活性组分存在相互作用,活性高的Co-Mo/MCM-41催化剂的TPR谱在600℃左右出现一个新的特征峰。  相似文献   

10.
任靖  王安杰  李翔  鲁墨弘  滕阳  胡永康 《石油化工》2005,34(Z1):684-687
以MCM-41与HY的机械混合物为载体,负载活性金属Ni-Mo,Co-Mo,Ni-W制备了深度加氢脱硫催化剂,在高压固定床反应器上考察了它们对DBT的加氢脱硫活性.结果表明,掺杂一定量HY的催化剂表现出了较高的加氢脱硫活性,对于Ni-Mo系列的催化剂,当载体中HY的质量分数为25%时,催化剂活性最高.Ni与Mo最佳摩尔比为0.75,在280℃时DBT的转化率接近100%.对于Co-Mo和Ni-W系列的催化剂,当载体中HY的质量分数为10%时,催化剂活性最高,Co与Mo、Ni与W的最佳摩尔比为0.75.  相似文献   

11.
已评述了加氢脱硫,多环芳烃饱和及加氢脱氮的加氢处理反应有关影响选择性的因素,Ni/Mo 催化剂对脱氮比 Co/Mo 催化剂有更大的选择性。VanZoonen 和Douwes 指出 Co/Mo 催化剂的脱氮选择性能够由审慎选择的平均孔半径而达最佳化。使用 Ni/Mo 催化剂所研究的操作变量中观察得温度,压力对多芳选择性有强烈影响。多芳选择性对物流和粒径变化不敏感,脱氮在所有变量的研究中是最敏感的。脱氮反应的真实动力学被粒子内部和粒子间扩散所掩盖。观察到脱氮随着氢流率的变化而有反常结果。当氢流率增加脱氮减少。当有效粒径为0.04时时脱硫和多芳接近最大转化率。对于脱氮最大转化率则需要较低的有效直径。  相似文献   

12.
为更好发挥柴油超深度加氢脱硫(RTS)不同反应区域内不同类型催化剂的优势,在中型试验装置上考察了加氢反应活性高的 Ni-Mo-W型催化剂、直接脱硫反应活性高的Co-Mo型催化剂和具有轻微加氢改质活性的Ni-W型催化剂的不同级配方式对柴油超深度加氢脱硫反应的影响。结果表明:采用催化剂级配时与单独使用Ni-Mo-W催化剂时的超深度加氢脱硫效果相当;在第一反应器采用Ni-Mo-W型催化剂、第二反应器采用Ni-W型催化剂时,可有效降低加氢柴油产品的密度与多环芳烃含量;在第一反应器采用Ni-Mo-W型与Co-Mo型催化剂等体积比级配、第二反应器采用Co-Mo型催化剂的级配方案时,可有效降低柴油加氢反应的氢耗。  相似文献   

13.
采用尿素螯合剂法制备了不同MgO含量的Co-Mo/Al2O3-MgO催化剂,采用N2吸附-脱附法、TPR、HRTEM等技术对催化剂进行了表征,在管式固定床反应器中以二苯并噻吩(DBT)的二甲苯溶液为模型化合物对催化剂的加氢脱硫活性进行了评价。实验结果表明,添加MgO可显著改善Co-Mo/Al2O3催化剂的结构和性能,Co-Mo/Al2O3-MgO催化剂呈现出多孔径中心的特点;随MgO添加量的增加,Co-Mo/Al2O3-MgO催化剂中的Co-O-Mo物相增多,硫化后易形成更多高活性Co-Mo-S物相。与Co-Mo/Al2O3和Co-Mo/Al2O3-TiO2催化剂相比,Co-Mo/Al2O3-MgO-0.8(载体中MgO的质量分数为0.8)催化剂在氢烃体积比为300时即呈现出很高的DBT脱除率(97.0%),具有低氢烃比下即可实现高加氢脱硫活性的优点。  相似文献   

14.
以NH_4NO_3水溶液预处理的γ-Al_2O_3为载体,采用浸渍法制备了Co/γ-Al_2O_3催化剂,考察了添加少量贵金属Ru对Co/γ-Al_2O_3催化剂F-T合成性能的影响。实验结果表明,添加Ru可作为氢溢流源促进Co物种的还原,另外,Ru与Co相互作用形成易还原的Co-Ru物种,导致催化剂表面Co物种的还原温度降低,Co物种容易还原,反应过程中可利用的表面金属Co原子数增加;Ru可增加Co/γ-Al_2O_3催化剂表面桥式CO吸附的强度,使CO便于离解;添加少量Ru能明显提高Co/γ-Al_2O_3催化剂的活性和重质烃C_5~+的选择性。在原料气n(H_2):n(CO)=2.0、反应温度493K、压力1.5 MPa、气态空速500 h~(-1)下,15.0%Co-0.4% Ru/γ-Al_2O_3催化剂上CO的转化率和C_5~+的选择性分别为85.39%和84.28%。  相似文献   

15.
本文介绍了 Co-Mo/Al_2O_3加氢催化剂硫化态的化学组成及其催化性质,研究了预硫化条件对加氢脱硫活性的影响,探讨了最佳预硫化条件。  相似文献   

16.
采用分步浸渍法制备了系列Ni-Mo/TiO_2-Al_2O_3和Co-Mo-P/TiO_2-Al_2O_3催化剂,在固定床微型反应装置上考察了n(Ni):n(Ni+Mo)、n(Co):n(Co+Mo)、P的添加量对催化剂预加氢和主加氢反应性能的影响;对粗苯两段加氢精制的工艺条件进行了研究。实验结果表明,2Ni-8Mo/TiO_2-Al_2O_3预加氢催化剂(NiO和MoO_3质量分数分别为2%和8%)和2Co-8Mo-1P/TiO_2-Al_2O_3主加氢催化剂(CoO,MoO_3,P_2O_5质量分数分别为2%,8%,1%)对粗苯加氢反应效果最好;粗苯两段加氢精制最优工艺条件为:预加氢反应温度190~230℃、主加氢反应温度310~360℃、反应压力2.0~3.5MPa、液态空速2.0~3.5h~(-1)、氢油体积比350~800,在此条件下加氢液体产物中噻吩硫含量为零,苯、甲苯和二甲苯总收率保持在99%以上;催化剂在160h的稳定性实验中表现出良好的稳定性。  相似文献   

17.
以拟薄水铝石为原料,采用水热法合成载体γ-Al_2O_3的前体碳酸铝铵(AACH),利用XRD,BET,SEM,~(27)Al MAS NMR,Py-IR,HRTEM等手段对AACH、γ-Al_2O_3试样(Al_2O_3-AC)和Ni Mo/γ-Al_2O_3催化剂进行表征,考察了碳酸氢铵浓度和水热时间对制备AACH的影响,研究了催化剂的加氢脱硫性能。表征结果显示,在NH_4HCO_3浓度为2.00 mol/L、水热时间8 h条件下制备的AACH为棒状颗粒结构,结晶度较好;载体Al_2O_3-AC具有较大的比表面积、孔体积和孔径;Ni Mo/Al_2O_3-AC催化剂硫化后Mo S_2颗粒分布均匀,活性相中出现了较多Ⅱ型的Ni—Mo—S相,具有较好的加氢脱硫活性。实验结果表明,在LHSV=4.0 h~(-1)、V(H_2)∶V(油)=300、氢压2 MPa条件下,Ni Mo/Al_2O_3-AC催化剂催化二苯并噻吩脱硫率达76.12%。  相似文献   

18.
哌啶对MO/MCM-41催化剂上二苯并噻吩加氢脱硫反应的影响   总被引:2,自引:0,他引:2  
在固定床反应器上考察了哌啶对二苯并噻吩(DBT)的加氢脱硫(HDS)反应活性及反应路径的影响。反应所用催化剂为MCM-41分子筛担载的Co-Mo或Ni-Mo硫化物,MoO3的负载量为20%,Co(Ni)与Mo的摩尔比为0.75。反应前,催化剂用10% H2S和90% H2的混合气进行硫化,硫化温度为400℃,硫化时间为3 h。HDS反应压力为5.0 MPa,温度为260-340℃,催化剂用量为0.2 g。反应原料为含哌啶和DBT分别为0-0.3%和0.8%的十氢萘溶液,液时空速为27 h-1。研究结果表明,无论是在Co-Mo/MCM-41 催化剂上还是在Ni-Mo/MCM-41催化剂上进行DBT的HDS反应,少量哌啶的存在都会大幅度降低催化剂的活性。由DBT的HDS反应产物的选择性分析发现,哌啶对HDS的抑制作用主要体现在对加氢反应路径的毒害作用。随着反应温度的升高,哌啶的加氢脱氮活性提高,HDS的反应活性接近于原料中没有哌啶时的活性,说明哌啶的毒害作用可能是因为它与含硫化合物竞争吸附而低温下加氢脱氮活性较低所致。  相似文献   

19.
以三氧化钼、硝酸钴、L-半胱氨酸为原料,水热法一步制得分散型Co促进的MoS2(Co-Mo-S)催化剂。采用XRD、XPS、ICP-OES、Raman、N2物理吸附和HRTEM等手段对催化剂进行表征,并在高压釜式反应器中,以二苯并噻吩(DBT)为模型化合物考察了Co-Mo-S催化剂的加氢脱硫性能。结果表明:当Co/Mo摩尔比不大于1时,Co-Mo-S催化剂仍保持2H-MoS2的层状结构,S-Mo(Co)-S片层层间距为0.94 nm,平均层数为4层,部分Co取代S-Mo-S层中的Mo形成“Co-Mo-S”相。相比于水热制备的MoS2,钴的加入对S-Mo(Co)-S片层堆积层数没有影响,但片层长度变短。悬浮床加氢评价结果表明:Co-Mo-S-1催化剂上的DBT的转化率和联苯选择性分别为MoS2催化剂上的1.8倍和7.3倍。当Co/Mo摩尔比不大于1时,Co-Mo-S催化剂上DBT的转化率和直接脱硫路径的选择性与“Co-Mo-S”相的含量呈现正相关的关系,说明“Co-Mo-S”相是主要活性位。  相似文献   

20.
以Si O_2为载体,用钼酸铵和磷酸氢二铵作钼源和磷源,采用共浸渍法制备了氧化态前体,用氢气在固定床反应器上原位还原制备出了负载型磷化钼催化剂。在360℃、5.0MPa和21h-1的反应条件下,考察了催化剂中MoP负载量、不同钼磷摩尔比对二苯并噻吩(DBT)加氢脱硫反应活性的影响。研究发现,MoP的负载量在8%~35%(质量分数)范围内,25%时活性最佳。n(Mo)/n(P)=1时的反应活性和n(Mo)/n(P)=1/2时相当,但远大于n(Mo)/n(P)=2时的反应活性。加入不同助剂Ni,Co,V后,未发现助剂组分和Mo之间存在协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号