首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文针对新型旋流静态微泡浮选柱,利用ANSYS Fluent商业软件,基于欧拉-欧拉双流体模型,系统地模拟了汽泡直径对该浮选柱不同流段内的流体动力学行为的影响规律。气液间相间作用力采用Tomiyama曳力模型并忽略升力、壁面润滑力、湍流耗散力、虚拟质量力和浮力。湍流采用Realizable k-ε双方程模型。研究发现,气泡直径对气含率、湍动能及其耗散率、速度大小以及气泡竖直方向的速度分量均产生显著影响。随着气泡直径的减小,气含量和气液界面面积均增大,湍动能及其耗散率先增大后减小,气泡在柱内的停留时间增加。研究结果对该浮选柱的设计、优化具有指导意义。  相似文献   

2.
采用改进的DSM大涡模型模拟气相湍流流动,采用颗粒轨道模型模拟颗粒运动,在双向耦合气固湍流数理模型基础上,采用蒙特卡洛方法Tanaka模型进行颗粒碰撞计算,取得相同颗粒数量下不同粒径的固体颗粒随湍射流运动对气相射流的调制规律及颗粒弥散规律.结果 表明,较大粒径的颗粒加强了气流刚性,由于颗粒惯性较大,对冲碰撞使颗粒在碰撞滞止点聚集,使流场中颗粒相浓度分布不均;中等粒径的颗粒对气相耗散较小,颗粒受到离心力主导影响,碰撞后仍沿涡的外围扩散;较小粒径的颗粒对气相耗散严重,颗粒跟随性好,大多聚集在涡核内,碰撞后仍随气体向外扩散,在流场中分布均匀.  相似文献   

3.
在Mg/CO2粉末火箭发动机的研究中,镁颗粒的燃速、颗粒粒径以及颗粒喷注速度是影响金属粉末燃烧特性的主要因素,金属粉末的燃烧特性决定了燃烧室的结构参数.采用RNG k-ε方程和层流有限速率化学反应模型对轴向喷注式圆柱型燃烧室燃烧性能进行了三维定常数值仿真,研究了颗粒粒径及喷注速度对燃烧室中反应特性的影响,旨在为发动机结构尺寸确定提供参考,所建立计算模型与实际参数吻合较好.仿真结果表明:小粒径镁粉燃烧比较充分,颗粒粒径过大导致燃烧效率低下;镁粉燃烧放热峰随喷注速度的增加而向燃烧室后端移动,喷注速度过大则导致燃烧不完全;金属颗粒径向扩散很少,导致燃烧室壁面附近化学反应量较少且温度较低,可以利用来增强热防护能力.  相似文献   

4.
本文利用CFX模拟软件,考察了加压流化床内的三维流动特性,分析压力对床层沿床压降、固含率轴径向分布、颗粒速率以及气泡行为等方面的影响。结果表明,升高压力能够提高床层膨胀高度,降低床层固含率。在床层底部,升高压力对中心区域和壁面附近的固含率都会有明显影响,而在床层中部则主要使壁面附近固含率降低。同时,升高压力会明显增加床层底部的颗粒向上和向下速率,并且会使床层内气泡数量增加,气泡会出现频繁的合并与破裂。  相似文献   

5.
在试验的基础上,采用欧拉-欧拉双流体模型对垂直螺旋输送机气固两相流动进行了数值模拟,分析了输送过程中的颗粒速度、混合相压力、颗粒体积分数、颗粒填充率和颗粒拟温度的分布。结果表明:颗粒轴向速度受进口和出口影响较大,本文根据轴向速度的分布,将流场分为进口影响区,稳定输送区,出口影响区。在稳定输送区内,颗粒总速度在管壁处较大,由于间隙的存在,颗粒轴向速度在靠近管壁处较小,最大值仅出现在叶片外缘处。混合相压力随着高度的增加而增大,在出口处略大于大气压。随着转速的增加,颗粒填充率减小,颗粒逐渐聚集在管壁和叶片外缘处,单个螺距内且呈V形分布。叶片上的颗粒拟温度沿径向自内向外逐渐增大,靠近管壁处的颗粒拟温度大于流道中的颗粒拟温度,可用颗粒拟温度来表示叶片磨损情况。  相似文献   

6.
为了探讨研究喷雾冷却中冷却水流量、喷射速度及喷嘴轴向分布位置等因素对超音速扩压器壁面温度的影响,借助CFD计算软件FLUENT,采用标准k-ε湍流模型,对喷雾冷却下超音速扩压器内流场进行了数值仿真。通过计算,得到了扩压器内压强分布及壁面温度分布。分析了喷雾冷却中冷却水流量、喷射速度及喷嘴轴向位置对超音速扩压器壁面温度的影响。研究表明:随着冷却水流量的增大,扩压器壁面温度降低。同时,扩压器入口处静压升高,对应仿真高度降低;减小冷却水喷射速度,可以有效降低扩压器入口处壁面温度;喷嘴的轴向分布位置对扩压器壁面温度有较大影响,仿真结果证明,喷嘴沿轴向呈对数分布有利于降低扩压器壁面温度。  相似文献   

7.
SHG-Ⅱ-Z型脱硫除尘设备内三维两相流场的数值模拟   总被引:3,自引:3,他引:0  
采用RNG k-ε湍流模型,应用Fluent软件对SHG—Ⅱ—Z型脱硫除尘装置内三维两相流场进行了数值模拟,给出了压力、速度、湍流动能、湍流强度等参数的分布,并对固体颗粒的运动轨迹进行了计算。结果显示烟气在塔内旋转上升及壁面水膜有利于提高除尘效率,从人口底部进人设备的颗粒越容易被分离。计算结果对设备现场运行工艺参数优化及脱硫除尘塔的设计有一定的指导意义。  相似文献   

8.
纳米金刚石反应热的量子化学研究   总被引:5,自引:2,他引:3  
为了研究纳米粒子的粒度对比表面能及其参与反应时对反应热的影响规律,本文以球形原子簇来模拟纳米金刚石颗粒,建立了计算纳米粒子比表面能和摩尔反应热的模型,用量子化学方法(AM1),对粒度不同的金刚石纳米粒子的比表面能以及与二氧化碳反应的摩尔反应热进行了计算。结果表明:纳米粒子的比表面能随其粒径的减小而增大,且随着粒径的增大比表面能减小的趋势逐渐趋于平缓,而摩尔反应热的代数值则随其粒径的增大而增大。  相似文献   

9.
通过计算流体力学方法对圆形、椭圆形和矩形截面的螺旋管在湍流工况下的流动及传热性能进行模拟,分析了不同截面螺旋管内流体的速度场、温度场分布特征和场协同性能。结果表明,不同截面形状的螺旋管内均产生了二次流,二次流速度平均达到主流速度的2.7%~4.7%,二次流影响了场协同性能,进而影响了传热性能。圆形截面螺旋管综合传热性能最佳,椭圆形和矩形的螺旋管中,沿螺旋管螺旋线径向方向和轴向方向尺寸比值大的综合传热性能更好。随着Re的增大,场协同对于强化传热的影响逐渐减小,主流的湍流进一步成为强化传热主导因素。  相似文献   

10.
为探讨结晶釜直径对SAS(超临界抗溶剂法)过程的影响规律,并确定适宜的结晶釜直径,本文采用计算流体力学(CFD)方法,选用Realizableκ-ε湍动模型对SAS喷射过程建立模型。结晶釜高度为L=190 mm,考察了直径分别为40 mm、30 mm、20 rnm和15 mm时釜内流体迹线、溶剂浓度分布、有效扩散因子分布及湍动强度分布变化规律,尤其是喷嘴出口附近溶液射流区内的流场变化状况。结果表明,随着结晶釜直径的减小,釜内漩涡区逐渐向釜顶缩小,有利于避免釜内颗粒间碰撞造成的粘结;釜内溶剂浓度逐渐减小,而有效扩散因子分布及湍动强度的绝对值逐渐增大但分布范围逐渐向釜顶缩小:喷嘴出口附近溶液射流区内的有效扩散因子与湍动强度逐渐增大,有利于提高成核速率而减小颗粒粒径。较小直径的结晶釜,还会降低流体在釜内的停留时间,减少颗粒生长时间而利于减小颗粒粒径,因此选择小直径结晶釜对SAS过程有利。本文通过CFD模拟研究,揭示了SAS结晶釜直径对SAS成粒过程的影响规律,对SAS结晶釜的优化设计具有一定的理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号