首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hydrogen sorption properties of calcium borohydride (Ca(BH4)2) catalyzed with a small amount of TiF3, TiCl3, NbF5 or NbCl5 are investigated using thermal analyses and X-ray diffraction. NbF5 exhibits the best performance among all the catalysts; it causes a decrease in the hydrogen desorption temperature which leads to hydrogen absorption at practical temperature and pressure conditions. The hydrogen content of Ca(BH4)2 with NbF5 reaches about 5.0 wt.% after hydrogen absorption at 693 K for 24 h under 90 bar of hydrogen. The main dehydrogenation product of Ca(BH4)2 with NbF5 is a CaH2−xFx solid solution with a CaF2 (C1) structure, while pure Ca(BH4)2 produces CaH2 after hydrogen desorption.  相似文献   

2.
A series of rare-earth chlorides has been adopted to catalyze dehydrogenation reaction of NaAlH4. X-ray diffraction analysis and isothermal dehydrogenation measurement have proved that these chlorides enhance the dehydrogenation kinetics and lower the decomposition temperature of NaAlH4. The catalytic effect from high to low is in following order: SmCl3>CeCl3>TiCl3>NdCl3>GdCl3>LaCl3>ErCl3. In order to reveal the catalytic mechanism of the rare-earth chlorides on dehydrogenation reactions, systems doped with LaCl3 were investigated under different milling and dehydrogenation conditions. It has been proposed that the La cation reacts with hydrogen, which was released from NaAlH4, and then forms some sort of La–Al alloys. This process improves the performance of NaAlH4 dehydrogenation at a relatively low temperature. In the present research, the catalytic effect of La2O3 has also been investigated. Results show that La2O3 also have a catalytic effect on the dehydrogenation of NaAlH4, but the effect is less obvious than that of the rare-earth chlorides.  相似文献   

3.
Production of hydrogen gas from novel chemical hydrides   总被引:1,自引:0,他引:1  
Six ligand-stabilized complexes have been synthesized and tested for use as hydrogen storage media for portable fuel cell applications. The new hydrides are: [HC(3,5-Me2pz)3]LiBH4 (1), {[H2C(3,5-Me2pz)2]Li(BH4)}2 (2) (pz = pyrazolyl), [(TMEDA)Li(BH4)]2 (3) (TMEDA = (CH3)2NCH2CH2N(CH3)2), [HC(pz)3]LiBH4 (4), {[H2C(pz)2]Li(BH4)}2 (5) and Mg(BH4).2 3THF (6) (THF = tetrahydrofuran). Hydrolysis reactions of the compounds liberate hydrogen in quantities which range from 56 to 104 (± 5%) percent of the theoretical yield. Gas chromatographic analysis of the product gases from these reactions indicate that hydrogen is the only gas produced. Thermally initiated reactions of the novel compounds with NH4Cl were unsuccessful. Although the amount of hydrogen energy which can be theoretically obtained per unit weight is lower than that of the classical hydrides such as LiBH4 and NaBH4, the reactions are less violent and hydrolysis of compounds 1, 2, 4, 5 and 6 releases less heat per mole of hydrogen generated.  相似文献   

4.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA·h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01~3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA·h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA...  相似文献   

5.
The adsorption of H2 on single walled carbon nanotubes is investigated as a function of temperature, H2 loading and diameter of the nanotubes. The physisorption phenomenon is simulated by extensive equilibrium molecular dynamics. The applied intermolecular forces are modeled using the modified form of the well-known Lennard-Jones potential based on the tube curvature. The simulation results of exposing different H2 loadings on (3,3) and (9,9), at 77,300 and 600 K, under moderate pressure of 10 bar, show that the amount of adsorption is strongly influenced by the applied temperature, and that the adsorption energy is higher for nanotubes with smaller diameters. Moreover, analyzing the deformation of the nanotube adsorbents during the simulation time indicates that increasing the operating temperatures not only decreases the amount of adsorption monotonically but also imposes more nanotube distortions.  相似文献   

6.
Ethanol reforming over MgO and CeO2 Ni supported catalysts in molten carbonate fuel cell (MCFC) simulated operative conditions has been investigated. Results revealed that an optimum O2/C ratio (ATR condition) exists to enhance the performance of both catalysts which otherwise significantly deactivate mainly due to the coke formation. Oxygen contributes to depress coke formation but in some cases promotes acetaldehyde formation specially on Ni/CeO2 catalysts. Very high H2 selectivity (>98%) in steam reforming (SR) were obtained on both Ni/MgO and Ni/CeO2 catalysts by operating at while in ATR conditions a decrease in hydrogen selectivity was observed at high GHSV only since reactions involved in the reaction mechanism are not at equilibrium.  相似文献   

7.
A plate-type integrated fuel processor consisting of three different micro-structured modules was developed for hydrogen production in a 150 W PEMFC system. This system includes a reformer with combustor, two heat exchangers, and an evaporator with a combustor. Methanol steam reforming was chosen as a means to produce hydrogen for the PEMFC system. This system could be operated without any external heat supply. Hydrogen was used as the initial combustion fuel during startup, while methanol was used later. Cu/Zn/Al2O3 and Pt/Al2O3 catalysts were chosen for the steam reforming of methanol and the combustion, respectively, and coated on microchannel-patterned stainless steel sheets.

The integrated system was operated consistently with 80% of methanol conversion at for 20 h without deactivation of the catalysts. The production rate on dry basis and the composition of hydrogen was and ca 70%, respectively. Overall the thermal efficiency of this fuel processor based on the LHV was 56.7%.  相似文献   


8.
A thermochemical two-step water-splitting cycle using a redox system of iron-based oxides or ferrites was examined on hydrogen productivity and reactivity of ferrite in order to convert solar energy into hydrogen in sunbelt regions. In the present paper, a new concept is proposed for a windowed thermochemical water-splitting reactor, using an internally circulating fluidized bed of NiFe2O4/m-ZrO2 particles, and thermal reduction of the bed is demonstrated on a laboratory scale by using a solar-simulating Xe-beam irradiation. The concept is that concentrated solar radiation passes through the transparent window and directly heats the internally circulating fluidized bed. The fluidized bed reactor enabled the NiFe2O4/m-ZrO2 sample to remain in powder form without sintering and agglomerating during direct Xe-beam irradiation over 30 min. Approximately 45% of the NiFe2O4 was converted to the reduced phase by the solar-simulated high-flux beam, and was then completely reoxidized with steam at 1000 °C to generate hydrogen.  相似文献   

9.
In this paper, a photoelectrocatalytic (PEC) recovery of toxic H2S into H2 and S system was proposed using a novel bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA) photoanode. The BiOI/WO3 NFA with a vertically aligned nanostructure were uniformly prepared on the conductive substrate via transformation of tungstate following an impregnating hydroxylation of BiI3. Compared to pure WO3 NFA, the BiOI/WO3 NFA promotes a significant increase of photocurrent by 200%. Owing to the excellent stability and photoactivity of the BiOI/WO3 NFA photoanode and I/I 3 catalytic system, the PEC system toward splitting of H2S totally converted S2– into S without any polysulfide ( Sx n) under solar-light irradiation. Moreover, H2 was simultaneously generated at a rate of about 0.867 mL/(h·cm). The proposed PEC H2S splitting system provides an efficient and sustainable route to recover H2 and S.  相似文献   

10.
The electrochemical lithium insertion process has been studied in the family of monophosphate tungsten bronzes (PO2)4(WO3)2m, where m = 4 and 6. Structural changes in the pristine oxides were followed as lithium insertion proceeded. Through potentiostatic intermittent technique, the different processes which take place in the cathode during the discharge of the cell were analysed. The nature of the bronzes Lix(PO2)4(WO3)2m formed was determined by in situ X-ray diffraction experiments. These results have allowed establishment of a correlation with the reversible/irreversible processes detected during the electrochemical lithium insertion. Measurements of resistivity showed that upon lithium insertion, the metallic pristine oxides become insulating.  相似文献   

11.
Using the electrochemical deposition method, CdS thin films were deposited from acid solutions (pH = 2.5) containing CdS04 and Na2S203 on indium-oxide coated glass substrates. These films were annealed in N2, air, or O2 atmosphere at 200–500°C for 30 min. Photoluminescence spectra were measured at 77 K. For the films annealed in N2, the band edge emission became weaker and the luminescence due to defects shifted to longer wavelengths as the annealing temperature was raised above 300°C. However, for the films annealed in air or O2, the band edge emission was observed strongly irrespective of the annealing temperature and the luminescence due to defects was weak. Thus the O2 annealing is useful for the defects reduction.  相似文献   

12.
The steam treatment effect has been investigated over the doubly impregnated catalyst, Ni/Ce–ZrO2/θ-Al2O3, in steam methane reforming (SMR). The catalyst was remarkably deactivated by steam treatment but reversibly regenerated by H2-reduction. XRD results showed that the steam treatment resulted in the formation of NiAl2O4 which is inactive for SMR but it was reversibly converted to Ni by the reduction. The reversible oxidation-reduction of Ni state was also evidenced by XPS and it was observed that the formation of NiAl2O4 is more favorable at higher temperature. It is most likely that the alumina support is only partially covered with Ce–ZrO2 and most Ni directly interacts with θ-Al2O3 which would probably make easy formation of NiAl2O4 in the presence of steam alone. The results imply that, during the start-up procedure in SMR, too high concentration of steam could deactivate seriously Al2O3 supported Ni catalysts.  相似文献   

13.
通过浸渍沉淀法结合程序升温碳化法制备了Mo2C/Al2O3复合催化剂,并应用于二甲醚水蒸气重整催化体系的研究。考察了二甲醚水解催化载体、水解功能组分Al2O3与重整功能组分Mo2C的比例、反应物浓度对复合催化剂活性的影响。结果表明,β-Mo2C与γ-Al2O3载体以Mo/Al = 1/1耦合后能够高效催化二甲醚重整制氢,其最佳进料水醚比为5,最适反应温度为400℃。  相似文献   

14.
LiFePO4/C was prepared by solid-state reaction from Li3PO4, Fe3(PO4)2·8H2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)–DMC (dimethylcarbonate) 1 M LiPF6 was performed by galvanostatic charge–discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge–charge pulses, at different high C-rates (5–45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO4/C for full-HEV batteries at low energy costs.  相似文献   

15.
A novel photobioreactor (PBR) was utilized to produce H2 by indigenous purple nonsulfur bacterium Rhodopseudomonas palustris WP3-5 using acetate as the sole carbon source. The PBR was illuminated by combinative light sources including side-light optical fibers (internal light source) as well as external irradiation of halogen lamp and/or tungsten filament lamp. A fill and draw (F/D) operation of PBR was shown to improve the performance of photoH2 production over the performance of batch and continuous cultures under similar operation conditions. For medium improvement, the PBR was conducted under different concentrations of carbon source (acetate) and nitrogen source (glutamic acid). The results show that the highest overall H2 production rate (vH2) and H2 yield (YH2) occurred when the acetate concentration was 32.5 mmol/l and the glutamic acid concentration was 400 mg/l. The optimal acetate and glutamic acid concentration led to a vH2 and YH2 of 20.9 ml/h l and 2.47 mol H2/mol acetate, respectively. The H2 production rate and yield was further enhanced to as high as 38.2 ml/h l and 3.15 mol H2/mol acetate, respectively, while using a ternary-light-source (TLS) system, combining optical fiber, halogen lamp, and tungsten filament lamp (i.e., the OF/HL/TL system). Meanwhile, the high H2 production efficiency with TLS system was stably maintained for nearly 30 day under the F/D operations.  相似文献   

16.
Cu(InxGa1−x)2Se3.5 thin films were fabricated by rf sputtering from CuInxGa1−xSe2 and Na mixture target by controlling the mixture ratio. X-ray diffraction analyses show that the structure of Cu(InxGa1−x)2Se3.5, thin films is different from chalcopyrite structure: especially, CuIn2Se3.5 thin films have a defect chalcopyrite structure. The lattice parameters for Cu(InxGa1−x)2Se3.5 thin film are slightly smaller than those for CuInxGa1−xSe2 thin film and linearly decreased with increasing Ga content. The optical absorption coefficients for Cu(InxGa1−x)2Se3.5, thin films exceed 2 × 104 cm−1 in energy region above the fundamental band edge. The band gap for Cu(InxGa1−x)2Se3.5 thin films is larger than that for CuIn.Ga1−x2Se2 with the same Ga content and increased with increasing Ga content.  相似文献   

17.
The La0.7Mg0.25Ti0.05Ni2.975Co0.525 (AB3) alloy was modified with different contents of polyaniline (PANI) through ball milling. XRD, SEM and FTIR were used to characterize the properties of the AB3/x PANI composites (x=1, 2, 3 and 4 wt%). The effects of PANI on the electrochemical properties of AB3 alloy electrode were studied by charge–discharge, electrochemical impedance spectroscopy (EIS), linear polarization (LP) and potentiostatic discharge experiments. The XRD, SEM and FTIR results showed that ball milling did not change the characterizations of PANI and AB3 alloy but decreased the average particle size of AB3 alloy. The charge–discharge results indicated that the maximum discharge capacity of AB3 alloy electrode decreased with the addition of PANI. However, the discharge cycle stability of AB3/PANI composite electrodes increased firstly and then decreased with the increase in PANI content. The EIS and LP curves showed the same trends with the discharge cycle stability. The hydrogen diffusion coefficients of AB3/PANI composites were estimated from the potentiostatic discharge curves, indicated the opposite trend with the discharge cycle stability. When the PANI content was equal to 3 wt%, the AB3/PANI composite electrode exhibited an optimal electrochemical kinetic property.  相似文献   

18.
A mixed phototrophic sludge was enriched from the sediment of a local river for continuous hydrogen production from acetate and butyrate in a complete-mix reactor. At pH 7.0–7.5 and , the optimal hydrogen production rate at 48 h of hydraulic retention time (HRT) for 150 days of steady-state operation averaged with of biomass. The sludge yield averaged -VSS/g-COD. Results of batch experiments showed an optimal pH of 8.5 and an optimal concentration of 2 mM for hydrogen production. At 10 mM, severely inhibited the hydrogen production. Three of the five OTUs classified from 26 clones developed from the seed sludge were phototrophs, based on phylogenetic analysis. Among them, OTU LA15, which is closely related to Rhodobacter sp., was most likely responsible to the hydrogen production.  相似文献   

19.
The preparation of LiCoyMnxNi1−xyO2 from LiOH·H2O, Ni(OH)2 and γ-MnOOH in air was studied in detail. Single-phase LiCoyMnxNi1−xyO2 (0y0.3 and x=0.2) is obtained by heating at 830–900°C. The optimum heating temperatures are 850°C for y=0–0.1 and 900°C for y=0.2–0.3. Excess lithium (1z1.11 for y=0.2) and the Co doping level (0.05y0.2) do not significantly affect the discharge capacity of LizCoyMn0.2Ni0.8−yO2. The doping of Co into LiMn0.2Ni0.8O2 accelerates the oxidation of the transition metal ion, and suppresses partial cation mixing. Since the valence of the manganese ion in LiMn0.2Ni0.8O2 is determined to be 4, the formation of a solid solution between LiCoyNi1−yO2 and Li2MnO3 is confirmed.  相似文献   

20.
Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700–850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g−1 h−1). The propane conversion, selectivity for propylene and net heat of reaction (ΔHr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号