首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenolic compounds are useful markers to control olive oil technological processes, including the virgin olive oil (VOO)/water separation after olive oil extraction. In this investigation, VOO extracted from olives of cv. Coratina using a mild oil/water separator called the hydrocyclone sedimentation system (Hydroil) was compared with VOO obtained using a conventional vertical centrifuge separator (Cenoil), which is mostly used in the modern olive oil industry. Secoiridoid aglycones were selected, among phenolic compounds, as markers and analyzed using reversed‐phase liquid chromatography coupled to linear quadrupole ion‐trap mass spectrometry with electrospray ionization in the negative mode. VOO samples obtained using the Hydroil system were found to contain significantly higher levels of secoiridoid aglycones, compared to the Cenoyl‐type samples. In particular, the total content of the aglycones of decarboxymethyl oleuropein, decarboxymethyl ligstroside, ligstroside, and oleuropein, expressed in terms of oleuropein, was estimated as 35.40 ± 0.80 mg kg?1, compared to 8.06 ± 0.41 mg kg?1 in the Cenoil samples (n = 3). Since no significant difference in residual water (P < 0.05) was found between the two types of VOO samples, the higher amount of secoiridoids obtained for Hydroil‐type ones was explained by the lower extent of oxidation occurring during the mild oil/water separation achieved using the Hydroil system.  相似文献   

2.
Ethanol is the alcoholic precursor of fatty acid ethyl esters (FAEEs) in virgin olive oil (VOO). Because of its miscibility, water addition during oil extraction may affect oil ethanol content and then, the FAEEs synthesis during oil storage. In this work, the effect of water addition on VOO ethanol content and composition is studied. Water addition at two extraction systems (two and three phases) is compared and for vertical centrifuge, water addition at different temperatures is assayed. Ethanol content, quality parameters, and healthy components are determined in the oils. Results indicate three phase system gives oils with a 25% lower ethanol content than two phases. Ethanol reduction because of water addition is more important for three phases system (≈14%). For vertical centrifugation, ethanol is lowered as water dose and temperature increase. In general, water addition for any of the extraction steps analyzed reduces the oil ethanol concentration but other aspects such as fruity intensity and phenol content are also lowered. Practical applications: Virgin olive oil final ethanol content, and then its FAEEs concentration, does not only depend on the health and conservation status of olives, but also on the extraction system used and the amount of water added to the extraction process. The knowledge of the impact on ethanol content of water addition during oil extraction can be useful for olive oil legislators in order to keep the approved limits of FAEEs or to modify them. For oil producers, results can help to reduce the oil ethanol content and then FAEEs synthesis during virgin olive oil storage.  相似文献   

3.
The effect of heating at 180 °C on the antioxidant activity of virgin olive oil (VOO), refined olive oil (ROO) and other vegetable oil samples (sunflower, soybean, cottonseed oils, and a commercial blend specially produced for frying) was determined by measuring the radical‐scavenging activity (RSA) toward 1,1‐diphenyl‐2‐picrylhydrazyl radical (DPPH?). The RSA of the soluble (polar) and insoluble (non‐polar) in methanol/water fractions of olive oil samples was also measured. The stability of heated oils was assessed by determining their total polar compound (TPC) content. VOO was the most thermostable oil. Total polar phenol content and the RSA of VOO heated for 2.5 h decreased by up to 70 and 78%, respectively, of their initial values; an up to 84% reduction in RSA of VOO polar and non‐polar fractions also occurred. Similar changes were observed in the RSA of ROO and its non‐polar fraction after 2.5 h of heating. The other oils retained their RSA to a relatively high extent (up to 40%) after 10 h of heating, but in the meantime they reached the rejection point (25–27% TPC). The results demonstrate that VOO has a remarkable thermal stability, but when a healthful effect is expected from the presence of phenolic compounds, heating has to be restricted as much as possible.  相似文献   

4.
The influence of the olive oil processing steps [paste malaxation (PM), decanter centrifugation (DC), and vertical centrifugation (VC)] on the dissolved oxygen (DO) concentration in virgin olive oil (VOO) right after production was investigated at industrial plant scale for two successive years. The influence of this parameter on quality decay during shelf life, assessed by peroxide value (PV) analysis, was also monitored. The VC step showed the higher oxygenation effect (50% increase in comparison to the control), and a good linear regression (r2 = 0.83) was found between the initial DO concentration and the PV after 2 days. An 18‐months shelf life test, performed on VOO sampled before and after the VC, indicated the slowest decay kinetics in the oils with the lower initial DO concentration, i.e. the non‐centrifuged oils.  相似文献   

5.
The main objective of this study was to evaluate the effect of different deficit irrigation treatments (control, regulated deficit irrigation [RDI]‐1, RDI‐2, and RDI‐3) on the phenolic profile of the olive paste and oil content. Irrigation treatments with more stress water led to a considerable increase in the phenolic compounds of olive paste, especially in oleuropein (60.24%), hydroxytyrosol (82%), tyrosol (195%), and verbascoside (223%) compared to control. A significant increase in the content of total flavonoids and phenolic acids was also observed for these samples. In virgin olive oils (VOO) elaborated from the most stressed olive trees (RDI‐2 and RDI‐3), a noticeable increase in phenolic substances with antioxidant properties (oleuropein, hydroxytyrosol, tyrosol, secoiridoid derivatives, and o‐vanillin) was observed. Consequently, water stress conditions improved antioxidant activity of VOO.  相似文献   

6.
The results obtained in this work explain how clarification systems can affect the conservation of virgin olive oils (VOOs) during the storage step. The evolution of the quality and sensory properties during the storage of VOOs clarified by different systems, vertical centrifugal separator (VCS) with minimal water addition and conical bottom settling tank (CBST), is studied at industrial scale for two different crop years. In general, VCS oils show a slight higher moisture and solid impurities content at the end of the storage step due to a higher emulsion grade (because of the emulsion generated) caused by the rotating movement of this clarification system. For the studied clarification systems, no remarkable differences are observed between the oils during their storage for quality indexes. However, these systems show differences regarding oil sensory properties. The VOOs clarified by VCS are characterized by a higher presence of phenol components, higher positive sensory attributes intensity, and higher lipoxygenase (LOX) aldehydes content during their storage. VOOs from CBST show lower phenol content, a higher “non‐LOX” volatiles content, and the presence of sensory defects during storage. Practical Applications: The results obtained in this work are very important in order to provide specific recommendations and scientific support based on objective data to improve VOO quality. As described in this study, the VCS with a minimal water addition can be a better option to produce VOO of improved quality. This clarification system is an efficient and quick operation that reduces the contact between oil and the remaining water and impurities during the storage step. The minimal water addition used in this clarification system allows obtaining VOOs with higher phenol content and positive sensory notes. This leads to prolong VOO shelf‐life and conservation during the storage stage, due to preservation of the quality indexes and minor components with antioxidant activity. Besides, this clarification system reduces the water consumption during oil clarification and generates a lower wastewater volume regarding conventional vertical centrifugation, and therefore can be considered more environmentally friendly.  相似文献   

7.
In recent years, phenolic acids have received considerable attention as they are essential to olive oil quality and nutritional properties. This study aims to validate a rapid and sensitive method based on ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC–TOF‐MS) for analyzing the phenolic acid content of olive oil and assessing its impact on virgin olive oil (VOO) sensory attributes. Once this method was validated, we used it to evaluate the phenolic acid composition of several Spanish monovarietal virgin olive oils in relation to nine different olive ripening stages. The results obtained confirm that the methodology developed in this study is valid for extracting and analyzing phenolic acids from VOO. The phenolic acid content of the virgin olive oils sampled was proven to be influenced by the type of cultivar and olive harvest date. Therefore, phenolic acids might be used as potential markers for olive oil cultivar or ripening stage. Finally, the data obtained indicate that the sensory properties of VOO may be differently affected by its phenolic acid content depending on the type of cultivar. Practical applications: The method validated in the present study – based on UPLC‐TOF‐MS – allows experts to assess the phenolic acid content of different VOO cultivars (varieties). This application will probably be very useful to the olive oil industry. The reason is that our study revealed that phenolic acids have an impact on the sensory quality of VOO, which is essential to consumer preferences and choice. In addition, there are phenolic acids that are only found in a particular variety of olive oil obtained from fruits at a specific ripening stage. Consequently, phenolic acids could be used as potential markers for olive oil variety and harvest time.  相似文献   

8.
Frying performance of canola oil (CO) was investigated in the presence of 5, 10, and 15% levels of virgin olive oil (VOO) and pumpkin seed oil (PSO) during frying of potatoes at 180°C. Acid value, carbonyl value, total polar compounds content, and total tocopherols content of the oil samples were determined during the frying process. VOO and PSO addition improved the frying stability of the CO. Frying performance of the CO increased more in the presence of PSO than in the presence of the VOO. The PSO levels higher than 5% exerted pro‐oxidant effects, indicating the necessity of investigation at lower levels. The better antioxidative effect of PSO was attributed to its probably different phenolic composition.  相似文献   

9.
The biosynthesis of the phenolic fraction of olive fruits during ripening and the transformations occurring in this moiety during virgin olive oil (VOO) extraction are discussed in this paper. The influence of agronomical factors that can significantly affect the phenolic profile of VOO is also discussed. Particularly, it is worth emphasizing the role of genetic factors, cultivation and climatic conditions such as water availability, atmospheric temperature, altitude, health status of the fruits, alternate bearing in the olive, and some processing factors such as crushing, malaxation time and temperature or volume of water added during milling. Among these parameters, special attention has been paid to genetic factors due to the high variability observed among Olea europaea genotypes for all recorded traits. In this context, interesting experimental results have been obtained with cultivated and wild olive trees, and also with segregating populations resulting from olive breeding programs. To the authors' knowledge, reviews evaluating the influence of the main factors that contribute to the profile of hydrophilic phenols have not been previously published. The discussion concerning olive breeding programs is a major and novel aspect to be emphasized considering recent trends to obtain new olive cultivars that confer better organoleptic properties and better quality to VOO.  相似文献   

10.
Oil blending was conducted to study the effects of changes in fatty acid composition (FAC), tocopherols and total phenol content (TPC) on oxidative stability of virgin olive oil (VOO):walnut oil (WO) blends. The measurement of the antioxidant activity of bioactive components present in the parent oils and blends was achieved by their ability to scavenge the free stable 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The highest percentage of DPPH· inhibition was found for pure VOO, and the lowest one for pure WO. EC50 values obtained from the DPPH assay correlated significantly and inversely with TPC. The generation of volatile flavor components in VOO indicated the predominance of C6 compounds produced through biochemical (enzymatic) pathways, whereas WO showed increased concentrations of medium chain (C7–C11) aldehydes produced through chemical (oxidative) pathways. The results obtained confirm the importance of VOO phenolics in providing protection against oxidation in VOO and VOO/WO blends. However, considering the impact of FAC and the content of endogenous antioxidant substances mentioned previously on the oxidative stability of the oils analyzed, the effect of an elevated unsaturation level (WO) prevails over a high amount of such bioactive components (VOO).  相似文献   

11.
Quality of virgin olive oil (VOO) depends on phenolic molecules content, which depends on the biochemical characteristics of olive fruits, namely endogenous enzymes. In order to ascertain the influence of olive fruit ripening degree on the phenol content, enzyme activities in olive fruits, and the quality of the corresponding oils were studied during Oueslati olive ripening. In fact, three enzymes were studied: peroxidase (POX) in olive seeds, polyphenoloxidase (PPO), and β-glucosidase (β-GL) in olive fruits mesocarp. Each enzyme showed specific trend: POX activity increased gradually until reaching a maximum (17.061 ± 0.101 U g−1 FW) at ripening index (RI) 3.6 and then decreased slowly at advanced ripening stage. However, the maximum of PPO activity (240.421 ± 0.949 U g−1 FW) was observed earlier at RI of 0.7. Concerning β-glucosidase activity, its maximal was 60.857 ± 1.105 U g−1 FW at RI 2.8, then, it decreased sharply to reach 17.096 ± 0.865 U g−1 FW at RI 3.9. A significant increase of total phenol content as well as the antioxidant activity were observed during Oueslati olive ripening. Moreover, phenolic profile indicated that appropriate harvesting date of Oueslati olives coincided with RI 3.9 given that highest content of most important individuals phenolic compounds responsible for the main VOO biological properties achieved on this date. Furthermore, phenols amount of Oueslati VOO was principally due to PPO enzyme activity as the increase in total phenols coincides with the decrease in PPO activity.  相似文献   

12.
The overall quality of virgin olive oil (VOO) is closely related to its oxidative stability that is usually evaluated through the stability index measured by the Rancimat apparatus. Quality characteristics and also pro‐oxidant and antioxidant content for 52 Greek VOO samples (Koroneiki cv) were used to build up a model capable of predicting stability. Collinearity diagnostics, variable selection, and regression analysis were applied to the experimental data to locate the contribution of each parameter to the keeping quality of the samples. The predictive ability of the model was confirmed for a second VOO ample set of the same cultivar. It was found that except for the peroxide value, which negatively influences the stability, other important parameters were α‐tocopherol, total polar phenol and total chlorophyll content. It is concluded that the colorimetric determination of total polar phenols, the spectrometric determination of total chlorophylls and the high‐performance liquid chromatography analysis of α‐tocopherol, not presently included in the established methods of official analysis, can be used for a better evaluation of VOO quality. These parameters, which can be easily adopted as routine methods by the industry, seem to be of utmost importance for shelf life prediction and expiration dating if applied for the promotion of the most competitive products in the international olive oil market.  相似文献   

13.
A rapid Fourier transformed infrared (FTIR) attenuated total reflectance (ATR) spectroscopic method was applied to the determination of water content (WC), total phenol amount (TP) and antioxidant activity (ABTS . +) of virgin olive oils (VOO) and olive oils. Calibration models were constructed using partial least squares regression. Oil samples with WC ranging from 289 to 1402 mg water/kg oil, with TP from 46 to 877 mg gallic acid/kg oil and with ABTS . + from 0 to 5.7 mmol Trolox/kg oil were considered for chemometric analysis. Better results were obtained when selecting suitable spectral ranges; in particular, from 2260 to 1008 cm?1 for WC, from 3610 to 816 cm?1 for TP and from 3707 to 1105 cm?1 for ABTS . +. Satisfactory LOD values by the FTIR‐chemometric methods were achieved: 9.4 (mg/kg oil) for WC; 12.5 (mg gallic acid/kg oil) for TP, and 0.76 (mmol Trolox/kg oil) for ABTS . +. The evaluation of the applicability of these analytical approaches was tested by use of validation sample sets (n = 16 for WC, n = 11 for TP and n = 14 for ABTS) with nearly quantitative recovery rates (99–114%). The FTIR–ATR method provided results that were comparable to conventional procedures. Practical applications : The presented method is based on ATR–FTIR in combination with multivariate calibration methodologies and permits a simultaneous evaluation of important quality parameters of VOO (WC, TP and ABTS . +). This approach represents an easy and convenient means for monitoring olive oil quality with the advantage of ease of operation, speed, no sample pretreatment and no consumption of solvents. The data obtained with this method are comparable to those obtained using the official reference method. Therefore, the technique is highly plausible as an alternative to the standard procedure for routine analysis or control at‐line of production processes.  相似文献   

14.
In previous studies we reported the presence of compounds with spectral characteristics similar to pheophytin α (Pheo α), which often accompany the Pheo α peak in the chromatographic profile of virgin olive oils (VOO) at 410 nm under normal-phase HPLC conditions. The occurrence and levels of these compounds were found to be affected by storage conditions of the oil samples. In the present study we investigated whether the major Pheo a degradation products, identified as pyropheophytin α (coeluting with the respective epimer) and 132-OH-pheophytin α, could be used as estimates of VOO history. The content of Pheo α and its degradation products was determined for a great number of authentic olive oil samples of unknown history. Results are discussed in comparison with other quality indices (e.g., antioxidant content) when necessary. High amounts of the pyro form (20–30% of total pheophytins) were related to thermal abuse or lengthy storage. The presence of allomers indicated oxygen availability. The levels of these products, 0–20% of the total pheophytin content for 62% of the samples, seemed to be influenced by the presence of pro- and antioxidants. When low levels of Pheo α are not accompanied by other degradation products, light exposure for a certain period of storage can be assumed.  相似文献   

15.
Research has been carried out to ascertai the effects of different processing systems on olive oil quality. Tests were performed in industrial oil mills that were equipped with both pressure and centrifugation systems. Results show that oils extracted from good-quality olives do not differ in free fatty acids, peroxide value, ultraviolet absorption and organoleptic properties. Polyphenols ando-diphenols contents and induction times are higher in oils obtained from good-quality olives by the pressure system because it does not require addition of water to the olive paste. The centrifugation system requires the addition of warm water to the olive paste and helps to obtain oils with a lower content of natural antioxidants. Oils obtained from poorquality or from ripe olives in continuous centrifugal plants are lower in free fatty acids than those obtained by the pressure system. Dr. Mario Solinas is deceased—May 23, 1993.  相似文献   

16.
Virgin olive oil (VOO) based polyetheramide (PEtA) was developed from N-N′-bis(2-hydroxyl ethyl) olive fatty amide (HEOA) and orcinol through condensation polymerization. PEtA was further treated with toluylene 2,4-diisocynate (TDI) with different percentages (20–30 wt%) via addition polymerization to obtain poly(ether amide urethane) (PEtAU). The structural elucidation of HEOA, PEtA and PEtAU were carried out by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. Physico-chemical and physico-mechanical properties of the material were investigated by standard methods. Thermal stability and curing behavior of virgin olive oil, HEOA, and PEtAU were assessed by thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The corrosion behavior was investigated by potentiodynamic polarization measurements in different corrosive environments (3.5 wt% HCl, 5 wt% NaCl, 3.5 wt% NaOH, tap water) at room temperature. The results showed that UPEtA coatings exhibit good physico-mechanical as well as corrosion resistance performance and can be safely used up to 200 °C. The work is an attempt for alternate utilization of olive oil.  相似文献   

17.
The potential cardiovascular benefit of virgin olive oil (VOO) is widely recognized. However, the use of VOO at very high cooking temperatures makes these oils poorly suited for many Asian dishes. The use of tea seed oil (TSO) is increasing in Thailand, with TSO having a higher smoke point than VOO. The current study examines the effects of daily TSO intake in healthy adults. In a randomized, single-blind crossover design, 12 men consumed for 3 weeks 40 g day−1 of food prepared with either TSO or VOO as a cooking oil. Plasma lipids, thiobarbituric acid reactive substances (TBARS), and oxidant defense enzyme activities are measured before and after each 3-week intervention period. Gas chromatography analysis of TSO and VOO demonstrates that both oils are equally high in monounsaturated fatty acid. The dietary incorporation of TSO and VOO for three weeks reduces low-density lipoprotein cholesterol (LDL-C) concentrations by 15% and 13%, respectively; with total cholesterol (TC) levels lowered by 10% in both groups. No significant changes in TBARS or antioxidant enzyme activity is observed. These results support the concept that Thai TSO can be utilized as a suitable and healthy alternative oil for high-temperature cooking in many Thai and Asian diets. Practical Applications: Tea seed oil from Camellia oleifera grown in Thailand has been recently reported to favorably lower lipid profiles in hamsters fed a high-fat diet in a manner similar to feeding refined olive oil or grapeseed oil. A pilot crossover trial is conducted to compare the effects of three weeks of daily intake of either TSO or VOO in healthy human adults. Consumption of both oils produced significant reductions in TC and LDL-C. Thai TSO leads to favorable lipid profiles and is a reasonable choice for many Thai and Asian food recipes.  相似文献   

18.
Trace metals such as Cu and Fe have negative effects on the oxidative stability of olive oils, and consequently, their concentrations are used as quality criterion. Also, maximum levels are established for heavy metals (As and Pb) in olive oils due to their high toxicity. Olive fruits can be contaminated with these metals from soil and air and from the use of pesticides or fertilizers, with the potential contamination of virgin olive oil (VOO) during its extraction from the fruits. This work presents two goals: (a) to optimize an analytical method for the determination of metals in raw olive fruits using an Abencor system; (b) to carry out a preliminary study of the fate of the metals during VOO extraction. The selected metals were quantified in raw olive fruits, and in the olive pomace and VOO obtained after their processing. The metal determination was performed by inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion with HNO3/H2O2. The results showed that most of the metals (at least 90 %) present in the olive fruits were retained by the olive pomace, so obtaining high-quality VOO from the point of view of its metal content.  相似文献   

19.
We investigated how virgin olive oil (VOO) affected platelet and hypoxic brain damage in rats. Rats were given VOO orally for 30 days at 0.25 or 0.5 mL kg−1 per day (doses A and B, respectively). Platelet aggregation, thromboxane B2, 6-keto-PGF, and nitrites + nitrates were measured, and hypoxic damage was evaluated in a hypoxia–reoxygenation assay with fresh brain slices. Oxidative stress, prostaglandin E 2, nitric oxide pathway activity and lactate dehydrogenase (LDH) activity were also measured. Dose A inhibited platelet aggregation by 36% and thromboxane B2 by 19%; inhibition by dose B was 47 and 23%, respectively. Virgin olive oil inhibited the reoxygenation-induced increase in lipid peroxidation (57% in control rats vs. 2.5% (P < 0.05) in treated rats), and reduced the decrease in glutathione concentration from 67 to 24% (dose A) and 41% (dose B). Brain prostaglandin E 2 after reoxygenation was 306% higher in control animals, but the increases in treated rats were only 53% (dose A) and 45% (dose B). The increases in nitric oxide production (213% in controls) and activity of the inducible isoform of nitric oxide synthase (175% in controls) were both smaller in animals given VOO (dose A 84%; dose B 12%). Lactate dehydrogenase activity was reduced by 17% (dose A) and 42% (dose B). In conclusion, VOO modified processes related to thrombogenesis and brain ischemia. It reduced oxidative stress and modulated the inducible isoform of nitric oxide synthase, diminishing platelet aggregation and protecting the brain from the effects of hypoxia–reoxygenation. This study was partially supported by a grant from the Ministerio de Ciencia y Tecnología, Spain (AGL−04-7935-C03-02).  相似文献   

20.
Analysis of the polar fraction from virgin olive oil and pressed hazelnut oil by high-performance liquid chromatography showed marked differences in the chromatograms of the polar components in the two oils. Six commercial samples of pressed hazelnut oil and 12 samples of virgin olive oil (or blended olive oil including virgin olive oil) were analyzed. The phenolic content of the pressed hazelnut oil samples was 161±6 mg·kg−1. Inspection of the chromatograms showed that the pressed hazelnut oil extracts contained a component that eluted in a region of the chromatogram that was clear in the olive oil samples, and consequently this component could be used to detect adulteration of virgin olive oil by pressed hazelnut oil. The component had a relative retention time of 0.9 relative to 4-hydroxybenzoic acid added to the oil as an internal standard. The ultraviolet spectrum of the component showed a maximum at 293.8 nm, but the component could not be identified. Analysis of blends of oils showed that adulteration of virgin olive oil by commercial pressed hazelnut oil could be detected at a level of about 2.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号