共查询到4条相似文献,搜索用时 2 毫秒
1.
Meiling Wang Yingjie Cheng Hainan Zhao Jingwan Gao Junpeng Li Yizhan Wang Jingyi Qiu Hao Zhang Xibang Chen Yingjin Wei 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(29):2302105
The practical applications of aqueous zinc ion batteries are hindered by the formation of dendrites on the anode, the narrow electrochemical window of electrolyte, and the instability of the cathode. To address all these challenges simultaneously, a multi-functional electrolyte additive of 1-phenylethylamine hydrochloride (PEA) is developed for aqueous zinc ion batteries based on polyaniline (PANI) cathode. Experiments and theoretical calculations confirm that the PEA additive can regulate the solvation sheath of Zn2+ and form a protective layer on the surface of the Zn metal anode. This broadens the electrochemical stability window of the aqueous electrolyte and enables uniform deposition of Zn. On the cathode side, the Cl− anions from PEA enter the PANI chain during charge and release fewer water molecules surrounding the oxidized PANI, thus suppressing harmful side reactions. When used in a Zn||PANI battery, this cathode/anode compatible electrolyte exhibits excellent rate performance and long cycle life, making it highly attractive for practical applications. 相似文献
2.
Zhenrui Wu Jian Zou Yihu Li Evan J. Hansen Dan Sun Haiyan Wang Liping Wang Jian Liu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(5):2206634
Understanding zinc (Zn) deposition behavior and improving Zn stripping and plating reversibility are significant in developing practical aqueous Zn ion batteries (AZIBs). Zn metal is abundant, cost-effective, and intrinsically safe compared with Li. However, their similar inhomogeneous growth regime harms their practicality. This work reports a facile, easily scalable, but effective method to develop a textured Zn with unidirectional scratches on the surface that electrochemically achieves a high accumulated areal capacity of 5530 mAh cm−2 with homogenized Zn deposition. In symmetric cells, textured Zn presents a stable cycling performance of 1100 hours (vs 250 h of bare Zn) at 0.5 mA cm−2 for 0.5 mAh cm−2 and lower nucleation and plating overpotentials of 120.5 and 41.8 mV. In situ optical microscopy and COMSOL simulation disclose that the textured surface topography can 1) homogenize the electron field distribution on the Zn surface and regulate Zn nucleation and growth, and 2) provides physical space to accommodate Zn deposits, prevent the detachment of “dead” Zn, and improve the structural sufficiency of Zn anode. Moreover, differential electrochemical mass spectrometry analysis find that the textured Zn with regulated interfacial electron activity also presents a higher resistance toward hydrogen evolution and other parasitic reactions. 相似文献
3.
Peng Shi Tao Li Rui Zhang Xin Shen Xin‐Bing Cheng Rui Xu Jia‐Qi Huang Xiao‐Ru Chen He Liu Qiang Zhang 《Advanced materials (Deerfield Beach, Fla.)》2019,31(8)
Lithium (Li) metal‐based battery is among the most promising candidates for next‐generation rechargeable high‐energy‐density batteries. Carbon materials are strongly considered as the host of Li metal to relieve the powdery/dendritic Li formation and large volume change during repeated cycles. Herein, we describe the formation of a thin lithiophilic LiC6 layer between carbon fibers (CFs) and metallic Li in Li/CF composite anode obtained through a one‐step rolling method. An electron deviation from Li to carbon elevates the negativity of carbon atoms after Li intercalation as LiC6, which renders stronger binding between carbon framework and Li ions. The Li/CF | Li/CF batteries can operate for more than 90 h with a small polarization voltage of 120 mV at 50% discharge depth. The Li/CF | sulfur pouch cell exhibits a high discharge capacity of 3.25 mAh cm?2 and a large capacity retention rate of 98% after 100 cycles at 0.1 C. It is demonstrated that the as‐obtained Li/CF composite anode with lithiophilic LiC6 layers can effectively alleviate volume expansion and hinder dendritic and powdery morphology of Li deposits. This work sheds fresh light on the role of interfacial layers between host structure and Li metal in composite anode for long‐lifespan working batteries. 相似文献