首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
Gravel bed spawning grounds are essential for the reproduction of salmonids. Such spawning grounds have been severely degraded in many rivers of the world because of river regulation and erosive land use. To reduce its effects on salmonid reproduction rates, river managers have been restoring spawning grounds. However, measures of effectiveness are lacking for the restored spawning sites of brown trout (Salmo trutta). In this study, two methods were used to restore gravel bed spawning grounds in the Moosach River, a chalk stream in Southern Germany: the addition of gravel and the cleaning of colmated gravel. Seven test sites were monitored in the years 2004 to 2008, focussing on sediment conditions. Furthermore, brown trout egg survival and changes in the brown trout population structure were observed. Both gravel addition and gravel cleaning proved to be suitable for creating spawning grounds for brown trout. Brown trout reproduced successfully at all test sites. The relative number of young‐of‐the‐year brown trout increased clearly after the restoration. Sediment on the test sites colmated during the 4 years of the study. In the first 2 years, highly suitable conditions were maintained, with a potential egg survival of more than 50%. Afterwards, the sites offered moderate conditions, indicating an egg survival of less than 50%. Conditions unsuitable for reproduction were expected to be reached 5 to 6 years after restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Generalized habitat criteria for spawning sites of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) using depth, water velocity and substrate size were created based on published information. In addition, information on critical intragravel conditions for egg development was summarized. Salmon spawned mostly in relatively deep, swift‐velocity habitats (20–50 cm, 35–65 cm s?1), whereas trout selected slightly shallower and slower flowing spawning sites (15–45 cm, 20–55 cm s?1). Salmon and trout preferred pebbles (16–64 mm) for spawning. The minimum oxygen concentration for successful incubation of eggs varies with the developmental stage of eggs, and supply of it may be reduced by deposited fine sediment. Habitat criteria for spawning sites are narrower than those for small juveniles; therefore the use of separate criteria is recommended. In addition to the traditional habitat criteria variables (depth, water velocity, substrate), the critical intragravel factors affecting egg survival should be incorporated in biologically meaningful criteria for spawning habitat modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Crayfish (Orconectes spp.) and sculpins (Cottus spp.) were collected at eight lake trout spawning reefs in Lake Ontario to assess abundance and potential to consume lake trout eggs. Abundance of crayfish ranged from a high of 9.5/m2 in eastern Lake Ontario to 0/m2 in western Lake Ontario where the absence or near absence at four reefs sampled was attributed to cold water upwelling. Sculpin abundance ranged from 4.2 to 50.1/m2. Mean daily egg consumption (eggs/stomach) for sculpins 50 to 75 mm in length, ranged from 0 to 0.9 but differences among reefs were not significant. At one reef, significantly more eggs (2.5 eggs/stomach) were consumed by large sculpins (> 75 mm) than by small (44–49 mm) sculpins (0.2 eggs/stomach). Estimated egg consumption (eggs/stomach/m2) for sculpins > 43 mm for the eight reefs for the period between estimated date of peak lake trout spawning and a standardized 30-d period post spawning, ranged from 0 to 496 eggs/m2 consumed or from 0 to 54% of estimated egg abundance. No lake trout eggs were found in crayfish stomachs, because of their mode of feeding. Estimated egg consumption by crayfish was indirectly estimated from a relationship developed between carapace length and egg consumption using published literature and experimental work. Using this procedure, estimated egg consumption by crayfish for a standardized 30-d period after the date of peak spawning ranged from 0 to 65 eggs/m2 consumed, or from 0 to 82% of potential egg abundance for the eight reefs. At low egg abundance (< 100/m2), the density of crayfish and sculpin observed in Lake Ontario could result in sufficient egg consumption to cause almost 100% mortality of lake trout eggs. At higher egg abundance, however, mortality due to crayfish and sculpins appears to be relatively low. Deposition was sufficiently low at 5 of 8 sites to suggest the possible importance of sculpin and crayfish predation on lake trout recruitment failure in Lake Ontario.  相似文献   

4.
Thiamine Deficiency Complex (TDC) is an ongoing problem impacting salmonine health in various waterbodies, including Lake Ontario. The prevalence of TDC has been variable and explanations for differences are limited. In the current study, thiamine concentrations were measured in eggs, liver tissue, and muscle tissue sampled from brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), lake trout (Salvelinus namaycush), and steelhead trout (O. mykiss) that were collected from Lake Ontario and its surrounding tributaries. The occurrence of TDC was measured for each species based on TDC-induced offspring mortality rates under laboratory conditions. TDC-induced offspring mortality was observed for all species except brown trout. For affected species, egg free thiamine (Th) was consistently low compared to lake trout collected from Lake Superior that are considered thiamine replete. In addition, species with the lowest percentages of Th in their eggs were the most susceptible to TDC, suggesting that limited thiamine reserves in the form of Th may cause TDC-induced offspring mortality. Lastly, our results show that egg thiamine concentrations have yearly variation and increased for all species throughout the study. Reasons for such variation are undetermined; but, if egg thiamine concentrations continue to increase, the impacts of TDC on these salmonine species may lessen. Future monitoring is needed for determining if thiamine concentrations are increasing and the potential impacts that may have on the entire Lake Ontario fishery.  相似文献   

5.
The St. Marys River connects Lake Superior to Lake Huron, comprising the international border between Michigan, United States, and Ontario, Canada. This Great Lakes connecting channel naturally encompasses various habitats including lakes, wetlands, islands, tributaries, side channels, and main channels. The St. Marys River Rapids are shallow rock areas with high flow velocities (>1 m/s) in the upper river adjacent to the navigation locks and electric power generating stations, while the Little Rapids are shallow, recently restored rocky areas with lower velocities located about 7 km downstream. The St. Marys River Rapids provide important spawning habitat for several native and introduced fishes, but spawning by lake sturgeon (Acipenser fulvescens) was not previously documented. We sampled for lake sturgeon eggs and larvae in both locations during June and July 2018–2019 using weekly benthic egg mat lifts and overnight D-frame larval fish drift nets. Viable lake sturgeon eggs (11 in 2018, 45 in 2019) were collected in the tailrace of a hydroelectric power facility adjacent to the St. Marys River Rapids. Larval lake sturgeon (21 in 2018, 1 in 2019) were collected in the same area as the eggs. Neither lake sturgeon eggs nor larvae were collected at Little Rapids in either year. Our results are the first documentation of successful lake sturgeon spawning and larval drift in the upper St. Marys River. While our observations showed spawning in a human-made tailrace area, the fate of larvae produced here is unknown and warrants further research.  相似文献   

6.
In the Intermountain West, USA, fry of fall‐spawning brown trout (Salmo trutta) are susceptible to scour‐related mortality because they are still in the gravel during spring snowmelt run‐off events. The goal of our research was to understand patterns of gravel scour on the Logan River, Utah, in relation to brown trout spawning and whether mobility of spawning gravels could explain the absence of brown trout from higher elevations. We collected data to characterize local entrainment potential at spawning gravels longitudinally on the Logan River during 2009 and 2010 spring flood events. We used scour chains to measure scour depth at spawning locations, and we also examined the position of redds in channel cross sections in relation to the centre line. The flood magnitude in both years approximated the 2‐year flood magnitude, but the flood in 2009 was much longer in duration. Scour at 27% of scour chain locations exceeded the estimated median upper limit of developing fry in 2009, whereas scour at 0% of locations exceeded this depth in 2010. Brown trout spawned in locations with similar entrainment potential at both mid and high elevations, which contributed to a lack of trend in scour depth with elevation. In addition, the majority of areas chosen for spawning were channel margins. The relationship between local entrainment potential at spawning gravels and scour depth was similar for the mid‐elevation canyon zone with medium brown trout density and the high‐elevation noncanyon zone with low brown trout density. In a low‐elevation backwater zone containing high densities of brown trout, scour was high despite low levels of entrainment potential. Overall, findings suggest that spawning gravel scour is not limiting brown trout abundance at high elevations in this system given shallow scour depths overall and a general lack of increase in scour depth with increasing elevation/distance upstream.  相似文献   

7.
Rheophilic fishes are one of the ecological groups of fishes declining most quickly in number due to various habitat modifications and discharge regulations. Artificial rapid increases and decreases in discharge (hydropeaking) can cause severe damage to the eggs of rheophilic fishes. We investigated whether the effects of a water increase in hydropeaking on a spawning ground may be mitigated by a deflector installed at the top of the weir that diverts flow to other sections. At the research site, rheophilic asp (Leuciscus aspius) spawn annually in early spring, and their success might be affected by hydropeaking, with base discharge ranging from 3 to 7 m3 × s−1 and peak discharge ranging from 16 to 25 m3 × s−1 occurring 4 to 7 times during the asp spawning season and egg development period. To protect the adhesive eggs from detachment during peak discharge, a flow deflector (a wooden wall at the selected part of the weir) was installed to regulate discharge on the protected spawning ground. This measure allowed normal discharge under base flow conditions. During peak flow, a significant portion of the additional water was directed to the part of the river channel where egg abundance was lower and to the mill channel, where asp spawning was not present. While the total discharge increased 4.1 times compared to the base flow, the water discharge in the protected spawning ground increased only 2.7 times. This resulted in more than half of the asp eggs being retained in the protected channel. Although the use of such a measure is limited to specific local conditions where eggs are located just downstream of the weir, it can be a valid solution in highly fragmented rivers with hydropeaking and can lead to higher recruitment of rheophilic fishes.  相似文献   

8.
Lake trout stocked in the Great Lakes appear to spawn primarily on shallow reefs (< 16 m deep), particularly on breakwaters or water intake lines. Shallow water substrates are being rapidly colonized by zebra mussels, potentially resulting in degraded substrate and interstitial water quality. The attraction of spawning lake trout to new substrate and the effect of zebra mussels on spawning success was examined. Lake trout eggs and fry were collected on clean cobble and cobble fouled with zebra mussels at the Port of Indiana in southern Lake Michigan, and on each of three recently constructed submerged reefs. Egg deposition was similar among all sites except on new, unfouled cobble, where deposition was 11 to 29 times higher, depending on the collection device used. The ratio of empty egg chorions to intact eggs was similar among all sites except the fouled substrate, where the ratio was 129× higher (P < 0.001). Fry catches were similar on fouled and unfouled substrate, but 6.5 × higher on one of the new reefs (P < 0.01). In laboratory incubators, egg hatching rates were similar in cobble with and without zebra mussels. Lake trout were attracted to spawn on newly constructed artificial reefs, but the presence of zebra mussels appeared to reduce egg deposition and increase damage to eggs. Artificial reefs may successfully increase the amount of spawning substrate available for lake trout, but if they are constructed in shallow water they may not be productive areas for egg incubation and fry hatch due to the presence of zebra mussels, shallow-water egg and fry predators, and storm surge.  相似文献   

9.
Radiotelemetry was used to investigate seasonal movement and home range of brown trout Salmo trutta (size range 188–420 mm fork length, N = 30) in two reaches of the Noguera Pallaresa River (Ebro Basin, north‐east Spain) subjected to different flow regulation schemes. NP‐1 reach is a bypassed section with near natural flow conditions, whereas the downstream reach NP‐2 is subjected to daily pulsed flow discharge (i.e., hydropeaking) from an upstream hydropower station. Significant differences in home range size (95% kernel estimates) and seasonal movement pattern between study reaches were found. Mean home range size was (μ ± SE) 112.1 ± 11.5 m in the bypassed reach NP‐1 and increased significantly in the hydropeaking reach NP‐2 up to 237.9 ± 37.2 m. There was a large individual variability in fish home range size within reaches. Most of the seasonal differences in fish movement among reaches were associated with the spawning season. Pulsed discharge events in NP‐2 during daytime in summer (lasting about 3 hr and increasing water flow from 1 to 20 m3/s) did not cause significant displacements in either upstream or downstream direction during the duration of the event. Our results highlight the importance of habitat connectivity in hydropeaking streams due to the need of brown trout to move large distances among complementary habitats, necessary to complete their life cycle, compared with unregulated or more stable streams.  相似文献   

10.
Lake whitefish (Coregonus clupeaformis) within the waters of Green Bay, Lake Michigan have recently shown a substantial increase in abundance. Furthermore, after over 100 years of extirpation, adult lake whitefish are found spawning within major Wisconsin tributaries to Green Bay. Many knowledge gaps still exist with respect to the chronology of adult river migrations, including the physical characteristics of upstream habitats selected for reproduction and the extent of larval production by these riverine ecotypes. Here, we use hydroacoustic imaging along with egg and larval surveys to evaluate this novel riverine spawning in 2017 and 2018. Highest abundance of adults was observed in the month of November as temperatures declined below 8 °C. Spawning areas consisted of cobble substrates, and site-specific fish densities were primarily correlated with river flows between 0.3 and 1.0 m/s, with specific values varying by tributary and year. Locations of egg deposition mirrored areas of high observed fish densities. Larval production was documented on each tributary using active trawl ichthyoplankton sampling, and larvae were observed outmigrating to open water environments. We estimated tributaries produced 452,000 larvae in 2017 and 721,000 larvae in 2018. To our knowledge, this represents the first documentation of successful lake whitefish larval production from Green Bay tributaries and suggests tributary spawning populations contribute to the greater abundance of lake whitefish observed in recent years.  相似文献   

11.
Restoration of self-sustaining populations of lake trout is underway in all of the Great Lakes and Lake Champlain, but restoration has only been achieved in Lake Superior and in Parry Sound, Lake Huron. We evaluated progress toward restoration by comparing spawning habitat availability, spawner abundance, egg and fry density, and egg survival in Parry Sound in Lake Huron, in Lake Michigan, and in Lake Champlain in 2000–2003. Divers surveyed and assessed abundance of spawners at 5 to 15 sites in each lake. Spawning adults were sampled using standardized gill nets, eggs were sampled using egg bags, and fry were sampled using emergent fry traps and egg bags left on spawning reefs overwinter. Spawning habitat was abundant in each lake. Adult lake trout abundance was low in Lake Michigan and Parry Sound, and very high at one site in Lake Champlain. Egg deposition was lowest in Lake Michigan (0.4–154.5 eggs•m−2, median = 1.7), intermediate in Parry Sound (39–1,027 eggs•m−2, median = 278), and highest in Lake Champlain (0.001–9,623 eggs•m−2, median = 652). Fry collections in fry traps followed the same trend: no fry in Lake Michigan, 0.005–0.06 fry•trap−1 day−1 in Parry Sound, and 0.08–3.6 fry•trap−1 in Lake Champlain. Egg survival to hatch in overwinter egg bags was similar in Lake Michigan (7.6%) and Parry Sound (2.3–8.9%) in 2001–02, and varied in Lake Champlain (0.4–1.1% in 2001–02, and 1.8–18.2 in 2002–03). Lake trout restoration appears unlikely in northern Lake Michigan at current adult densities, and failure of restoration in Lake Champlain suggests that there are sources of high mortality that occur after fry emergence.  相似文献   

12.
The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.  相似文献   

13.
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population.  相似文献   

14.
Radiotelemetry was used to investigate detailed movement and summer habitat of brown trout Salmo trutta (size range 157–488 mm TL, n=18) in the Kananaskis River, Alberta. Flows in the Kananaskis River respond to pulsed daily discharge from an upstream hydroelectric generating facility (range 0.15–25 m3 s−1). Wetted area available for brown trout doubled during periods of high flow. Fluctuating river levels did not appear to influence the degree to which brown trout moved within the study site. However, there was evidence that brown trout used cover and pools more as discharge increased. During high flow conditions, brown trout used similar depths (63 cm), and significantly lower surface water velocities than during low flow conditions. Brown trout also moved closer to shore into interstitial spaces among woody debris and root complexes during high flow. Pool habitats were used most often compared with all other habitat types combined. Pools with large woody debris accounted for 75% of all habitat observations. Woody debris was used more often than all other cover types. Results of the study indicate that the effects of river regulation on brown trout appear to have been moderated by woody debris in pools and along river banks, which provided refuge from high water velocities during periods of high flow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A general model was developed to examine the effects of multiple predators on survival of eggs and fry of lake trout, Salvelinus namaycush, associated with spawning reefs. Three kinds of predation were simulated: epibenthic egg predators consuming eggs on the substrate surface during spawning, interstitial egg predators that can move in rocky substrate and consume incubating eggs, and fry predators. Also simulated was the effect of water temperature on predation rates. The model predicted that interstitial predation on eggs accounted for most (76 to 81%) of the predation on early life history stages of lake trout; epibenthic egg predation (12 to 19%) and fry predation (0 to 12%) had less effect on lake trout survival. Initial predation conditions chosen for the model were: epibenthic egg predation peaked at 2 eggs/m2/d over 30 d, interstitial egg predation at 2 eggs/m2/d over 180 d, and fry predation at 1 fry/m2/d over 60 d. With a starting egg density of 100 eggs/m2 and initial predation conditions, no lake trout were estimated to survive to swim-up. At egg densities of 250 eggs/m2, 36% of the lake trout survived. At the highest egg densities examined, 500 to 1,000 eggs/m2, estimated survival increased to about 70 to 80%. Simulated survival rates of lake trout decreased dramatically as predation rate increased but were not as sensitive to increases in the duration of predation.  相似文献   

16.
The environmental conditions and timing of spawning of Murray cod and trout cod were investigated over three successive years in the regulated Murray River and in the nearby, unregulated Ovens River. Larvae were collected in drift samples from early November. Murray cod larvae were present for up to ten weeks, but trout cod larvae were present for only about two weeks. Cod larvae were collected in both rivers in each year sampled, despite a range of flow conditions. Spawning periods, estimated by back‐calculating larval ages and egg incubation times, were in part, concurrent for the two species, beginning in October when water temperatures had exceeded 15°C, allowing the occasional hybridization that has been noted between these two species. Trout cod larvae (10.0–18.2 mm) were significantly larger than Murray cod larvae (9.5–14.8 mm) in both years and the larvae of both species were significantly larger in 1995/6 than in 1994/5 in the Murray River. There was no relationship between larval size and water temperature, but later spawning times at the upper Murray River site coincided with lower water temperatures. Larval abundance varied significantly between sites, samples and years, with peak larval abundances occurring in November. Murray cod larval abundance was best explained by the explanatory variables of year, day length and change in flow over the previous 7 d. Environmental conditions for the spawning of Murray cod and trout cod are similar, and both species exhibit a similar larval dispersal strategy by emergence into the drift. Spawning occurred regularly under a range of flow conditions and it is likely that recruitment of these species in these rivers is driven by the subsequent survival of larvae and juveniles. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The spawning migration and local homing of adult brown trout was analysed using radio telemetry in a regulated river in central Norway. Twenty‐eight large (37–64 cm) brown trout (Salmo trutta L.) were tracked before, during and after spawning in the River Nea, a watercourse with several obstructions, including an outlet tunnel from a power station and a regulated stretch (26 km) with 45 weirs. Two major patterns of spawning migration were found: (1) about half (n = 16; 57%) of the trout moved very little and remained in the deeper pools of the river from June until November; (2) about half (n = 12; 43%) of the trout migrated relatively long distances (12.5–28 km) up the river prior to the spawning period where they stayed in the outlets of small tributaries, or in rapids on the main river during the spawning period. We assume that these trout belong to a population of lake‐run migratory trout using the River Nea for spawning. There was no significant difference in body length of migratory and stationary brown trout and no significant difference in total distance moved by migratory males (30.5 km, n = 6) and females (20.5 km, n = 6, p > 0.05). Among migratory trout, we found no correlation between body length and migrated distance. Of the 12 migratory trout, nine undertook fast upward migration in periods of high water flow (> 100 m3/s). They passed the outlet tunnel from the power station and negotiated two to 35 weirs before reaching their main reproduction areas. Three trout crossed several weirs when the discharge was low (10–40 m3/s). When there was low discharge, fish remained at the outlet tunnel for up to four weeks and showed a high level of activity. Postspawning downstream migration started between 25 September and 25 October. Most migratory trout (n = 9) wintered in pools on the lower part of the river or in weir basins; only two trout descended to the lake (Selbusjøen) in late autumn. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Suitable gravel availability is critical for the spawning success of lithophilous fishes, including redd builders. Redd construction during spawning can alter substrate characteristics, thereby influencing hydraulic conditions and sediment transport, highlighting the importance of spawning as a zoogeomorphic activity. Here, interactions between redd‐building fish and their spawning environment were investigated for European barbel Barbus barbus with a comparative approach across three English rivers: Teme (western), Great Ouse (eastern) and Idle (central). Sediment characteristics of spawning habitats were similar across the rivers, including subsurface fine sediment (<2 mm) content (≈20% dry weight), but elevated subsurface silt content and coarser surface sediments were found in the river Teme. Water velocities were similar at spawning sites despite differences in channel width and depth. Redds were characterized by a pit and tailspill, with no differences in surface grain‐size characteristics between these and the surrounding riverbed, but with topographic alteration (dimensions and tailspill amplitude) in line with those of salmonids. Estimates of the fraction of the bed that spawning barbel were capable of moving exceeded 97% in all rivers. Estimated reproductive potential varied significantly between the rivers Idle and Teme (3,098 to 9,715 eggs/m2), which was largely due to differences in barbel lengths affecting fecundity. Larger barbel, capable of producing and depositing more eggs, but in more spatially extensive redds, meaning fewer redds per given surface area of riverbed. Predictions of barbel egg mortality based on sand content were low across both rivers. The effects of silt on barbel egg and larvae development are unknown, but the levels detected here would significantly impact salmon egg mortality. Similarities in fish length to redd area and the size of moveable grains by spawning barbel and salmon suggest they have similar geomorphic effects on sediments, although fine sediment tolerance is highly divergent.  相似文献   

19.
Tributaries provide spawning habitat for three of four major sub-stocks of Lake Erie walleye (Sander vitreus). Despite anthropogenic degradation and the extirpation of other potamodromous species, the Maumee River, Ohio, USA continues to support one of the largest fish migrations in the Laurentian Great Lakes. To determine if spawning habitat availability and quality could limit production of Maumee River walleye, two habitat suitability models were created for the lower 51 km of the Maumee River and the distribution and numbers of walleye eggs deposited in a 25 km stretch of river were assessed. Walleye eggs were collected using a diaphragm pump at 7 and 10 sites from March/April to May 2014 and 2015. The habitat suitability models showed that <3% of the river yielded ‘good’ walleye spawning habitat and 11–38% yielded ‘moderate’ walleye spawning habitat, depending on the model. However, a large set of rapids at river kilometer 28 and more than five river kilometers of less suitable habitat separated areas of ‘good’ habitat. The rapids may present a migratory barrier for many spawning walleye, as modeled water velocities exceed maximum estimated walleye swim speeds 71–100% of days during pre-spawn migration and spawning during the study period. In both study years, there was a sharp decline in mean egg numbers from spawning sites downstream of the rapids (439.7 eggs/2 min tow ± 990.6 SD) to upstream sites (5.9 eggs/2 min tow ± 19.4 SD). Physical barriers like rapids may reduce spawning habitat connectivity and could limit walleye production in the Maumee River.  相似文献   

20.
Lake trout from Seneca Lake provide an important source of stock for Great Lakes rehabilitation but the lake trout in Seneca Lake have been hatchery supported, themselves, for many years. Hatchery catch data show a continued decline in lake trout population and this is assumed to reflect changes in hatchery stocking, fishing pressure, and lamprey predation. A commensurate increase in the smelt population, since 1973, may have also contributed to the decrease of natural recruitment by lake trout. No indication of reduced egg survival was found in the hatchery which might be related to lake contamination effects. Our survey observations (1980–81) indicate that the lower parts of deep water cobble gravels have become much degraded by fine particulates, making such sites unsuitable for spawning lake trout. It is thought that natural replacement in Seneca Lake is strongly dependent on successful hatch of eggs laid at depths of 25 to 35 m, but the observed relationship between egg deposition and optimal thermal conditions seems to be anomalous. Since no controlling relationship was found between long-term decline of the lake trout population and climatic variation, it is believed that degradation of lake spawning sites has strongly influenced natural recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号