共查询到20条相似文献,搜索用时 0 毫秒
1.
Chao Wu Lei Xia Shengji Xia Bart Van der Bruggen Yan Zhao 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(5):2206041
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources. 相似文献
2.
Li Chen Cailong Zhou Tianyi Yang Wei Zhou Ying Chen Linghao Wang Chenyang Lu Lichun Dong 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(25):2300456
In the context of thin-film nanocomposite membranes with interlayer (TFNi), nanoparticles are deposited uniformly onto the support prior to the formation of the polyamide (PA) layer. The successful implementation of this approach relies on the ability of nanoparticles to meet strict requirements regarding their sizes, dispersibility, and compatibility. Nevertheless, the synthesis of covalent organic frameworks (COFs) that are well-dispersed, uniformly morphological, and exhibit improved affinity to the PA network, while preventing agglomeration, remains a significant challenge. In this work, a simple and efficient method is presented for the synthesis of well-dispersed, uniformly morphological, and amine-functionalized 2D imine-linked COFs regardless of the ligand composition, group type, or framework pore size, by utilizing a polyethyleneimine (PEI) shielded covalent self-assembly strategy. Subsequently, the as-prepared COFs are incorporated into TFNi for the recycling of pharmaceutical synthetic organic solvents. After optimization, the membrane exhibits a high rejection rate and a favorable solvent flux, making it a reliable method for efficient organic recovery and the concentration of active pharmaceutical ingredient (API) from the mother liquor through an organic solvent forward osmosis (OSFO) process. Notably, this study represents the first investigation of the impact of COF nanoparticles in TFNi on OSFO performance. 相似文献
3.
4.
Zeliang Cheng Pinyue Zhang Ziyang Wang Haicheng Jiang Wenjian Wang Dandan Liu Lina Wang Guangshan Zhu Xiaoqin Zou 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(30):2300438
Covalent organic frameworks (COFs) mixed matrix membranes (MMMs) combining individual attributes of COFs and polymers are promising for gas separation. However, applying COF MMMs for propylene/propane (C3H6/C3H8) separation remains a big challenge due to COF inert pores and C3H6/C3H8 similar molecular sizes. Herein, the designed synthesis of a Cu(I) coordinated COF for membrane C3H6/C3H8 separation is reported. A platform COF is synthesized from 5,5′-diamino-2,2′-bipyridine and 2-hydroxybenzene-1,3,5-tricarbaldehyde. This COF possesses a porous 2D structure with high crystallinity. Cu(I) is coordinated to bipyridyl moieties in the COF framework, acting as recognizable sites for C3H6 gas, as shown by the adsorption measurements. Cu(I) COF is blended with 6FDA-DAM polymer to yield MMMs. This COF MMM exhibits selective and permeable separation of C3H6 from C3H8 (C3H6 permeability of 44.7 barrer, C3H6/C3H8 selectivity of 28.1). The high porosity and Cu(I) species contribute to the great improvement of separation performance by virtue of 2.3-fold increase in permeability and 2.2-fold increase in selectivity compared to pure 6FDA-DAM. The superior performance to those of most relevant reported MMMs demonstrates that the Cu(I) coordinated COF is an excellent candidate material for C3H6 separation membranes. 相似文献
5.
David W. Burke;Zhiwei Jiang;Andrew G. Livingston;William R. Dichtel; 《Advanced materials (Deerfield Beach, Fla.)》2024,36(1):2300525
2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges. 相似文献
6.
7.
Yingdan Zhang;Pan He;Meicheng Zhang;Jie Zhang;Ningning He;Yingdi Zou;Zhiying Fan;Chan Deng;Yang Li;Lijian Ma; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(52):2407874
The stability of covalent organic frameworks (COFs) is crucial for their applications in demanding environments. However, increasing the stability of COFs often comes with challenges such as higher synthesis difficulty, lower crystal quality, and reduced controllability during synthesis, making it difficult to regulate dimensions and morphology, thereby impacting the processing and shaping of stable COFs. Herein, the study presents a novel confined polymerization approach guided by hydrogen bonding preassembly to synthesize a soluble and stable COF featuring β-ketoenamine linkage. The presence of relatively weaker hydrogen bonds accelerates the orderly arrangement of monomers, ensuring appropriate spacing, and orientations among functional groups. This facilitates efficient covalent polymerization, leading to the creation of the framework while minimizing the “self-correction” mechanism during crystal growth, thereby enhancing the efficiency of COF synthesis. Furthermore, this method offers precise control over the size of the synthesized COF. The resulting crystalline COF can be toggled between dissolution and precipitation states, facilitating the fabrication of mixed matrix membranes (MMMs) through leveraging the solubility properties of COF. Overall, this pioneering strategy yields valuable insights for advancing weak bond assembly-mediated confined polymerization approaches, the controlled synthesis of stable COFs, and the preparation and processing of soluble COFs in diverse applications. 相似文献
8.
Ke Cheng Hailian Li Jia-Rui Wang Pei-Zhou Li Yanli Zhao 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(34):2301998
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications. 相似文献
9.
Weijian Liu;Xiaofeng Li;Pan He;Bo Li;Ning Liu;Yang Li;Lijian Ma; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(46):2403684
The prevalent π–π interactions in 2D covalent organic frameworks (COFs) impart a certain flexibility to the structures, making the stacking of COF layers susceptible to external stimuli and introducing some structural disorder. Recent research indicates that the flexibility between COF layers and the associated disorder significantly influence their selective adsorption performance toward gas molecules. However, the adsorption process in a solution environment is more complex compared to gas-phase adsorption, involving interactions between adsorbents and adsorbates, as well as the solvation effects of flexible 2D COFs. Therefore, the inherent flexibility and disorder in 2D COFs under solution conditions and their impact on the adsorption performance of metal ions have not been observed yet. Herein, the synthesis of a novel carboxyl-functionalized COF featuring stable β-ketoenamine and benzimidazole linkages, named DMTP-COOH, is presented. DMTP-COOH exhibits excellent selective adsorption capability for uranium, with significantly different adsorption capacities observed after treatment with different solvents. This notable difference in adsorption capacity is observed under varying pH, concentration, time, and even in the presence of multiple competing ions. This work represents the first observation of the significant impact of solvent soaking treatment on the selective adsorption performance of COFs for uranium under liquid conditions. 相似文献
10.
Long Zheng Qian Song Peng Tan Sheng-Tao Wang Xiao-Qin Liu Lin-Bing Sun 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(15):2207291
Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host–guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3H6) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3H6. UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3H6. 相似文献
11.
Lin Zhu Yajiao Su Zhongshan Liu Yu Fang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(9):2205501
The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies. 相似文献
12.
Jie Fu Jia-Ying Liu Guo-Hao Zhang Qiu-Hong Zhu Shuang-Long Wang Song Qin Ling He Guo-Hong Tao 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(39):2302570
Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science. 相似文献
13.
Manying Liu Kai Jiang Xing Ding Shaolei Wang Chengxin Zhang Jing Liu Zhen Zhan Guang Cheng Buyi Li Hao Chen Shangbin Jin Bien Tan 《Advanced materials (Deerfield Beach, Fla.)》2019,31(19)
The synthesis of highly crystalline covalent triazine frameworks (CTFs) with ultrastrong covalent bonds (aromatic C?N) from the triazine linkage presents a great challenge to synthetic chemists. Herein, the synthesis of highly crystalline CTFs via directly controlling the monomer feeding rate is reported. By tuning the feeding rate of monomers, the crystallization process can be readily governed in a controlled manner in an open system. The sample of CTF‐HUST‐HC1 with abundant exposed {001} crystal facets has the better crystallinity and thus is selected to study the effect of high crystallinity on photoelectric properties. Owing to the better separation of photogenerated electron–hole pairs and charge transfer, the obtained highly ordered CTF‐HUST‐HC1 has superior performance in the photocatalytic removal of nitric oxide (NO) than its lesser crystalline counterparts and g‐C3N4. 相似文献
14.
Wenyan Ji;Ming Liu;Yuping Li;Lulu Liu;Yuhan Wang;Feng Duan;Chunlei Su;Haibo Li;Renqiang Cao;Jingya Yin;Mingjie Wei;Zhongyi Jiang;Hongbin Cao; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(52):2405113
Zwitterionic membranes demonstrate excellent antifouling property in water purification. The covalent organic frameworks (COFs), due to the ordered channels and abundant organic functional groups, have distinct superiority in constructing zwitterionic surfaces.Here, the zwitterionic COF membrane is prepared with precise framework structures and uniform charge distribution. The negatively charged 4,4′-diaminobiphenyl-2,2′-sisulphonic acid sodium (SA) and positively charged ethidium bromide (EB) fragments are used to react with 1,3,5-triformylphloroglucinol (TP) at the gas-liquid interface to prepare zwitterionic COF membrane. The complementary charged fragments in the inter-layer and inner-layer facilitate the formation of continuous and tight hydration layer on the membrane surface and pore walls to resist the adsorption of pollutants. The zwitterionic COF membrane effectively resists both negatively charged bovine serum albumin and positively charged lysozyme pollutants with flux recovery ratio (FRR) of 97% and 85%, respectively. Furthermore, the regular nano-channels and balanced interactions between water and surface/pore walls of the zwitterionic membrane result in outstanding permeability of up to 146 L m−2 h−1 bar−1 and excellent dye/salt separation selectivity. The water permeation and antifouling mechanism of membranes are elucidated by experimental and molecular dynamics calculation. Zwitterionic COF membranes can find promising applications in preparing high-performance antifouling membranes. 相似文献
15.
16.
Zhuangyan Guo;Shuai Yang;Minghao Liu;Qing Xu;Gaofeng Zeng; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(19):2308598
Oxygen evolution reaction (OER) is the half-reaction in zinc–air batteries and water splitting. Developing highly efficient catalysts toward OER is a challenge due to the difficulty of removing four electrons from two water molecules. Covalent organic frameworks (COFs) provide the new chance to construct the highly active catalysts for OER, because they have controlled skeletons, porosities, and well-defined catalytic sites. In this work, core-shell hybrids of COF and metal–organic frameworks (MOFs) have first demonstrated to catalyze the OER. The synergetic effects between the COF-shell and MOF-core render the catalyst with higher activity than those from the COF and MOF. And the catalyst achieved an overpotential of 328 mV, with a Tafel slope of 43.23 mV dec−1 in 1 m KOH. The theoretical calculation revealed that the high activity is from the Fe sites in the catalyst, which has suitable binding ability of reactant intermediate (OOH*), and thus contributed high activity. This work gives a new insight to designing COFs in electrochemical energy storage and conversion systems. 相似文献
17.
Yongfei Zeng Ruqiang Zou Yanli Zhao 《Advanced materials (Deerfield Beach, Fla.)》2016,28(15):2855-2873
As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. 相似文献
18.
Gilles Matthys;Andreas Laemont;Nathalie De Geyter;Rino Morent;Roy Lavendomme;Pascal Van Der Voort; 《Small (Weinheim an der Bergstrasse, Germany)》2024,20(47):2404994
The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes. 相似文献
19.