首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
State-of-the-art proton exchange membranes (PEMs) often suffer from significantly reduced conductivity under low relative humidity, hampering their efficient application in fuel cells. Covalent organic frameworks (COFs) with pre-designable and well-defined structures hold promise to cope with the above challenge. However, fabricating defect-free, robust COF membranes proves an extremely difficult task due to the poor processability of COF materials. Herein, a bottom-up approach is developed to synthesize intrinsic proton-conducting COF (IPC-COF) nanosheets (NUS-9) in aqueous solutions via diffusion and solvent co-mediated modulation, enabling a controlled nucleation and in-plane-dominated IPC-COF growth. These nanosheets allow the facile fabrication of IPC-COF membranes. IPC-COF membranes with crystalline, rigid ion nanochannels exhibit a weakly humidity-dependent conductivity over a wide range of humidity (30–98%), 1–2 orders of magnitude higher than that of benchmark PEMs, and a prominent fuel cell performance of 0.93 W cm−2 at 35% RH and 80  ° C arising from superior water retention and Grotthuss mechanism-dominated proton conduction.  相似文献   

2.
The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies.  相似文献   

3.
Molecular separation is critical to mitigating the issues of water contamination and shortage and currently focuses on the use of framework materials fabricated by special building blocks. However, developing a simple and tunable synthesis methodology for materials with alternative permeation and selectivity remains challenging. Here, we fabricate a series of nanochannel membranes composed of uniform spherical covalent organic frameworks (COFs). Diversified spherical COFs have diameters ranging from ∼150 to ∼800 nm, therefore demonstrating a programmable surface charge distribution from −24 to −63 mV. COF membranes with tailor-made surface charge enable different surface energy levels and allow increasing water permeation of 15.5 to 34.5 L m−2 h−1 bar−1. Furthermore, COFs can also act as filters, achieving up to 99.7% rejection and separation of the opposite charged dyes. We expect these COFs with tunable surface charge to be applicable to variety of fields, including sieving, batteries, and water treatments.  相似文献   

4.
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.  相似文献   

5.
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.  相似文献   

6.
2D covalent organic frameworks (2D COFs) are a unique materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, 2D COFs typically form insoluble aggregates, thus limiting their processing via additive manufacturing techniques. In this work, colloidal suspensions of boronate-ester-linked 2D COFs are used as a spray-coating ink to produce large-area 2D COF thin films. This method is synthetically general, with five different 2D COFs prepared as colloidal inks and subsequently spray-coated onto a diverse range of substrates. Moreover, this approach enables the deposition of multiple 2D COF materials simultaneously, which is not possible by polymerizing COFs on substrates directly. When combined with stencil masks, spray-coated 2D COFs are rapidly deposited as thin films larger than 200 cm2 with line resolutions below 50 µm. To demonstrate that this deposition scheme preserves the desirable attributes of 2D COFs, spray-coated 2D COF thin films are incorporated as the active material in acoustic sensors. These 2D-COF-based sensors have a 10 ppb limit-of-quantification for trimethylamine, which places them among the most sensitive sensors for meat and seafood spoilage. Overall, this work establishes a scalable additive manufacturing technique that enables the integration of 2D COFs into thin-film device architectures.  相似文献   

7.
8.
An efficient and environmentally friendly method has been developed to prepare Ag nanoparticles (AgNPs) coated tea polyphenols/polystyrene (Ag-TP/PS) nanofiber membrane, which combines electrospinning and in situ reduction of [Ag(NH3)2]+ using TP as the reductant and stabilizer. In this method, TP/Pluronic/PS nanofiber membranes are fabricated by electrospinning and then immersed in the aqueous solution of [Ag(NH3)2]+. While TP is being released from TP/Pluronic/PS nanofibers, the surface of TP/Pluronic/PS nanofibers could function as reactive sites for reduction of [Ag(NH3)2]+ without any extra reagents. XRD results indicate that AgNPs thus formed are in metallic form of Ag0. SEM images show that AgNPs can be densely and uniformly coated on the surface of TP/Pluronic/PS nanofibers. The as-prepared Ag-TP/PS nanofiber membranes exhibit excellent catalytic properties for the degradation of methylene blue. Furthermore, the effect of [Ag(NH3)2]+ concentration on the morphology and catalytic activity of the membrane is investigated. In addition, the antibacterial assays reveal that Ag-TP/PS nanofiber membrane possesses extraordinary antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms. The free-standing membrane is flexible and easy to handle, which is promising for potential applications in catalysis, antibacterial agents and water remediation fields.  相似文献   

9.
Covalent organic frameworks (COFs) have emerged as a fascinating crystalline porous material and are widely used in the field of catalysis. However, developing simple approaches to fabricate conjugated COFs with specific functional groups remains a significant challenge. In this study, the construction of defective COF‐LZU1 with Lewis acid sites embedded into the frameworks is fulfilled by a facile solvent‐assisted ligand exchange method. A monodentate ligand, protocatechualdehyde, is successfully introduced into the skeleton of COF‐LZU1, which endows the defects in the structure of COF‐LZU1 via replacement of the original coordinated benzene‐1,3,5‐tricarbaldehyde ligand. As‐synthesized defective COF‐LZU1 decorated with protocatechualdehyde is rich of free hydroxy groups for chelating with active metal ions. Specifically, after combining with Fe3+, the defective COF‐LZU1 shows excellent activity in catalytic alcoholysis of epoxides under mild conditions. The method reported here will open up the opportunity to incorporate different functional groups into COFs and enrich the strategies for creating new types of porous catalysts.  相似文献   

10.
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.  相似文献   

11.
The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid‐phase sorbents to provide enhanced protection. Herein, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groups in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime‐functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF‐TpAb‐AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g?1. These results delineate important synthetic advances toward the implementation of COFs in environmental remediation.  相似文献   

12.
The emergence of all-organic frameworks is of fundamental significance, and designing such structures for anion conduction holds great promise in energy conversion and storage applications. Herein, inspired by the efficient anion transport within organisms, a de novo design of covalent organic frameworks (COFs) toward ultrafast anion transport is demonstrated. A phase-transfer polymerization process is developed to acquire dense and ordered alignment of quaternary ammonium-functionalized side chains along the channels within the frameworks. The resultant self-standing COFs membranes exhibit one of the highest hydroxide conductivities (212 mS cm−1 at 80 °C) among the reported anion exchange membranes. Meanwhile, it is found that shorter, more hydrophilic side chains are favorable for anion conduction. The present work highlights the prospects of all-organic framework materials as the platform building blocks in designing ion exchange membranes and ion sieving membranes.  相似文献   

13.
The compatibility of crystallinity, stability, and functionality in covalent organic frameworks (COFs) is challenging but significant in reticular chemistry and materials science. Herein, it is presented for the first time a strategy to synthesize directly amino-functionalized COF with stable benzodiimidazole linkage by regioselective one-step cyclization and aromatization. Bandrowski's base with two types of amino groups is used as a unique monomer, providing not only construction sites for the material framework through specific region-selective reaction, but also amino active sites for functionality, which is usually difficult to achieve directly in COF synthesis because amino groups are the participants in COF bonding. In addition, the aromatic benzodiimidazole rings and the large conjugated system of the product effectively improve the crystallinity and stability, so that the as-prepared BBCOF remains unchanged in both acid and base solutions, which is obviously better than the conventional imine-linked COF. Impressively, the significantly enhanced conjugation degree by the benzodiimidazole structure also endows BBCOF with an efficient photocatalytic reduction of uranyl ion, with removal rate as high as 96.6% in single-ion system and 95% in multi-ion system. This study is of great importance to the design and synthesis of functional COFs with a commendable trade-off among crystallinity, stability, and functionality.  相似文献   

14.
Covalent organic frameworks (COFs), connecting different organic units into one system through covalent bonds, are crystalline organic porous materials with 2D or 3D networks. Compared with conventional porous materials such as inorganic zeolite, active carbon, and metal‐organic frameworks, COFs are a new type of porous materials with well‐designed pore structure, high surface area, outstanding stability, and easy functionalization at the molecular level, which have attracted extensive attention in various fields, such as energy storage, gas separation, sensing, photoluminescence, proton conduction, magnetic properties, drug delivery, and heterogeneous catalysis. Herein, the recent advances in metal‐free COFs as a versatile platform for heterogeneous catalysis in a wide range of chemical reactions are presented and the synthetic strategy and promising catalytic applications of COF‐based catalysts (including photocatalysis) are summarized. According to the types of catalytic reactions, this review is divided into the following five parts for discussion: achiral organic catalysis, chiral organic conversion, photocatalytic organic reactions, photocatalytic energy conversion (including water splitting and the reduction of carbon dioxide), and photocatalytic pollutant degradation. Furthermore, the remaining challenges and prospects of COFs as heterogeneous catalysts are also presented.  相似文献   

15.
In the context of thin-film nanocomposite membranes with interlayer (TFNi), nanoparticles are deposited uniformly onto the support prior to the formation of the polyamide (PA) layer. The successful implementation of this approach relies on the ability of nanoparticles to meet strict requirements regarding their sizes, dispersibility, and compatibility. Nevertheless, the synthesis of covalent organic frameworks (COFs) that are well-dispersed, uniformly morphological, and exhibit improved affinity to the PA network, while preventing agglomeration, remains a significant challenge. In this work, a simple and efficient method is presented for the synthesis of well-dispersed, uniformly morphological, and amine-functionalized 2D imine-linked COFs regardless of the ligand composition, group type, or framework pore size, by utilizing a polyethyleneimine (PEI) shielded covalent self-assembly strategy. Subsequently, the as-prepared COFs are incorporated into TFNi for the recycling of pharmaceutical synthetic organic solvents. After optimization, the membrane exhibits a high rejection rate and a favorable solvent flux, making it a reliable method for efficient organic recovery and the concentration of active pharmaceutical ingredient (API) from the mother liquor through an organic solvent forward osmosis (OSFO) process. Notably, this study represents the first investigation of the impact of COF nanoparticles in TFNi on OSFO performance.  相似文献   

16.
Membrane-based carbon dioxide (CO2) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2/CH4, CO2/H2, CO2/N2, and CO2/He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.  相似文献   

17.
The exploration of new porous hybrid materials is of great importance because of their unique properties and promising applications in separation of materials, catalysis, etc. Herein, for the first time, by integration of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a new type of MOF@COF core–shell hybrid material, i.e., NH2‐MIL‐68@TPA‐COF, with high crystallinity and hierarchical pore structure, is synthesized. As a proof‐of‐concept application, the obtained NH2‐MIL‐68@TPA‐COF hybrid material is used as an effective visible‐light‐driven photocatalyst for the degradation of rhodamine B. The synthetic strategy in this study opens up a new avenue for the construction of other MOF–COF hybrid materials, which could have various promising applications.  相似文献   

18.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials constructed from designer molecular building blocks that are linked and extended periodically via covalent bonds. Their high stability, open channels, and ease of functionalization suggest that they can function as a useful cathode material in reversible lithium batteries. Here, a COF constructed from hydrazone/hydrazide‐containing molecular units, which shows good CO2 sequestration properties, is reported. The COF is hybridized to Ru‐nanoparticle‐coated carbon nanotubes, and the composite is found to function as highly efficient cathode in a Li–CO2 battery. The robust 1D channels in the COF serve as CO2 and lithium‐ion‐diffusion channels and improve the kinetics of electrochemical reactions. The COF‐based Li–CO2 battery exhibits an ultrahigh capacity of 27 348 mAh g?1 at a current density of 200 mA g?1, and a low cut‐off overpotential of 1.24 V within a limiting capacity of 1000 mAh g?1. The rate performance of the battery is improved considerably with the use of the COF at the cathode, where the battery shows a slow decay of discharge voltage from a current density of 0.1 to 4 A g?1. The COF‐based battery runs for 200 cycles when discharged/charged at a high current density of 1 A g?1.  相似文献   

19.
Imine-linked 2D covalent organic frameworks (COFs) form more rapidly than previously reported under Brønsted acid-catalyzed conditions, showing signs of crystallinity within a few minutes, and maximum crystallinity within hours. These observations contrast with the multiday reaction times typically employed under these conditions. In addition, vacuum activation, which is often used to isolate COF materials significantly erodes the crystallinity and surface area of the several isolated materials, as measured by N2 sorption and X-ray diffraction. This loss of material quality during isolation for many networks has historically obscured otherwise effective polymerization conditions. The influence of the activation procedure is characterized in detail for three COFs, with the commonly used 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde network (TAPB-PDA COF), the most prone to pore collapse. When the networks are activated carefully, rapid COF formation is general for all five of the imine-linked 2D COFs studied, with all exhibiting excellent crystallinity and surface areas, including the highest surface areas reported to date for three materials. Furthermore, to simplify the workup of COF materials, a simple nitrogen flow method provides high-quality materials without the need for specialized equipment. These insights have important implications for studying and understanding how 2D COFs form.  相似文献   

20.
As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号