首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The conventional CaCl2–H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2–H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2–CaCl2–H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3% (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).  相似文献   

2.
Some jointed plain concrete pavements in the midwestern region of the United States of America have exhibited damage at the joints. This damage manifests itself in cracking and spalling in a small section (approximately 100 mm wide) along joints. These cracks may be due to either freeze-thaw cycling of concrete with a high degree of saturation or chemical reactions that occur between the deicing salt and the cementitious matrix. For example, deicing salts (e.g., CaCl2 MgCl2) may react with the cementitious matrix leading to the formation of calcium oxychloride. The formation of calcium oxychloride leads to matrix damage that results in the cracking and spalling of the concrete.The objective of this paper is to document the effect of carbonation on the potential for calcium oxychloride formation in a cementitious matrix. This paper examines ground hydrated cement paste powder made of different ordinary portland cements and portland cement containing fly ash, slag or silica fume. Each of these materials are tested for their potential to react with CaCl2 after exposure to different levels of carbonation. The results indicate that the potential of calcium oxychloride formation decreases with the increase in the degree of carbonation. For long carbonation durations or higher degree of carbonations, there is no calcium oxychloride formation even if the calcium hydroxide is not totally carbonated. It appears that this is due to the fact that carbonation reaction creates a calcite barrier around the remaining calcium hydroxide. The calcite barrier reduces the potential for reaction between calcium hydroxide with the deicing salt. This work indicates that in addition to previous work that has shown that calcium oxychloride formation can be reduced with the use of supplementary cementitious materials and topical treatments (sealers), carbonation is a factor that should be considered in determining the amount of calcium oxychloride that can form in a cementitious matrix.  相似文献   

3.
The synergistic effects of using several supplementary cementitious materials (SCMs), such as Blast Furnace Slags plus Limestone Filler or Fly Ashes, depend on the OPC composition. When using an OPC which is poor in C3A and alkalis in ternary formulations, a similar initial strength gain to that of a plain OPC is detected and at longer hydration ages, the formation of monocarboaluminate, hemicarbonate and hydrotalcite instead of monosulphate can be seen. If an OPC with a higher C3A content and alkalis is used with SCMs, the higher availability of Al causes the early formation of monocarboaluminate and a lower initial strength gain. At longer hydration times, in ternary blends with both OPCs, the mechanical strengths are higher and the C-S-H gels formed are richer in Al and poorer in C/S ratio with a subsequent lowering of the alkali content in the pore solution when compared to that in plain OPC.  相似文献   

4.
This work examined the effects of milling using a gravity ball mill on the reactivity of natural zeolites used as supplementary cementitious materials (SCMs). Six different particle size distributions of zeolites, created by milling the as-received zeolite in a ball mill for a specified amount of time, were characterized using x-ray fluorescence, quantitative x-ray diffraction, particle size analysis, pore size distribution and surface area analysis. Following material characterization, the pozzolanic reactivity of the zeolites was determined by measuring the quantity of calcium hydroxide in paste after 28 or 90 days and by tracking the compressive strength of zeolite-cement mortars. Results showed that a critical milling time exists, corresponding to a d50 of 7–9 μm, after which reductions in particle size can no longer be achieved and zeolite performance can no longer be improved through ball milling.  相似文献   

5.
This study investigates the effects of continuous deicer exposure on the performance of pavement concretes. For this purpose, the differences in the compressive strength, the changes in the dynamic modulus of elasticity (DME) and the depth of chloride ingress were evaluated during and after the exposure period. Eight different concrete mixtures containing two types of coarse aggregates (i.e. air-cooled blast furnace slag (ACBFS) and natural dolomite) and four types of binder systems (i.e. plain Type I ordinary portland cement (OPC) and three combinations of OPC with fly ash (FA) and/or slag cement (SC)) were examined. These mixtures were exposed to three types of deicers (i.e. MgCl2, CaCl2, and NaCl) combined with two different exposure conditions (i.e. freezing-thawing (FT) and wetting-drying (WD)). In cold climates, these exposure conditions are the primary durability challenges that promote the physical deterioration of concrete pavements. The results indicated that among the studied deicers, CaCl2 had the most destructive effect on the tested concretes while NaCl was found to promote the deepest level of chloride ingress yet was shown to have the least damaging impact on concretes. The microstructure evaluation revealed that the mechanism of concrete deterioration due to the deicer exposure involved chemical reactions between the deicers and concrete hydration products. The use of FA or SC as partial replacements for OPC can offset the detrimental effects of both deicers and FT/WD cycles.  相似文献   

6.
Temperature changes driven by hydration reactions and environmental loading are a leading cause of thermal cracking in restrained concrete elements. This work describes preliminary investigations on the use of microencapsulated phase change materials (PCMs) as a means to mitigate such thermal cracking. Special attention is paid to quantify aspects of: heat absorption and release, the development of unrestrained/restrained thermal stresses and strains and the mechanical properties including: compressive strength, elastic modulus and fracture behavior. First, PCMs incorporated in cementitious systems absorb and release heat, which scales as a function of their dosage and enthalpy of phase change. Second, for restrained and unrestrained conditions and for equal temperature change, the thermal deformation and stresses developed are noted to be similar to a plain cement system independent of the PCM dosage. However, PCM additions are noted to reduce the rate of deformation and stress development so long as the phase transition is active. Third, while the presence of PCMs does depress the compressive strength and elastic modulus (in increasing proportion with dosage), the fracture toughness is impacted to a lesser degree. While of a preliminary nature, the studies highlight a novel means of exploiting phase transitions to control thermal stress evolutions in restrained elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号