首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
It is a long-standing challenge to break the tradeoffs between different mechanical property indicators such as the strength versus toughness in the design of lightweight lattice materials. To tackle this challenge, a hierarchical lattice metamaterial with modified face-centered cubic (FCC) cell configuration, inspired by the glass sponge skeletal system, is proposed. The proposed lattice metamaterial simultaneously possesses high strength, high energy absorption, considerable toughness, as well as controllable deformation patterns through integration of both bionic features of double diagonal reinforcement and hierarchical circular modification. The compressive strength and energy absorption can reach 69.13 MPa and 53.39 J cm3, respectively. Furthermore, the proposed lattice also exhibits exceptionally high damage tolerance compared with existing lattice metamaterials with comparable strength by attenuating stress and deformation concentration that may cause catastrophic collapse. This design approach combines the advantages of tensile-dominated and bending-dominated lattices. Quantitatively, in terms of specific strength, specific energy absorption, and crushing force efficiency, the modified hierarchical circular FCC (MHCFCC) lattice metamaterial outperforms the Octet lattice by 14.85%, 53.28%, and 110.52%, respectively. This multibionic feature integration approach provides advanced design strategies for high-performance architected metamaterials with promising application potential.  相似文献   

2.
Additive manufacturing (AM) techniques have gained interest in the tissue engineering field, thanks to their versatility and unique possibilities of producing constructs with complex macroscopic geometries and defined patterns. Recently, composite materials—namely, heterogeneous biomaterials identified as continuous phase (matrix) and reinforcement (filler)—have been proposed as inks that can be processed by AM to obtain scaffolds with improved biomimetic and bioactive properties. Significant efforts have been dedicated to hydroxyapatite (HA)‐reinforced composites, especially targeting bone tissue engineering, thanks to the chemical similarities of HA with respect to mineral components of native mineralized tissues. Herein, applications of AM techniques to process HA‐reinforced composites and biocomposites for the production of scaffolds with biological matrices, including cellular tissues, are reviewed. The primary outcomes of recent investigations in terms of morphological, structural, and in vitro and in vivo biological properties of the materials are discussed. The approaches based on the nature of the matrices employed to embed the HA reinforcements and produce the tissue substitutes are classified, and a critical discussion is provided on the presented state of the art as well as the future perspectives, to offer a comprehensive picture of the strategies investigated as well as challenges in this emerging field of materiomics.  相似文献   

3.
激光同轴送粉增材制造TiAl合金的性能   总被引:5,自引:0,他引:5  
将Ti-48Al-2Cr-2Nb合金粉和铌粉进行机械混合,然后采用激光增材制造工艺成功制备出γ-TiAl合金样品,研究了激光功率、扫描速率和送粉量对沉积成形的影响规律,分析了沉积层的显微组织、相组成、断口形貌及沉积层的硬度分布。研究结果表明:随着激光功率增大,沉积层宽和层高均增大;随着扫描速率增大,沉积层宽和层高均减小;随着送粉量增大,沉积层的宽度增大,沉积层的高度基本不变;最佳工艺参数下得到的沉积试样成形良好,无冶金缺陷存在,沉积层由大量γ相和少量α_2相组成;沿沉积试样Z方向的室温压缩屈服强度为905 MPa,抗压强度为1542 MPa,压缩率14.7%,抗拉强度为425 MPa,断后伸长率为3.3%;压缩试样和拉伸试样的断口均为准解理断口。  相似文献   

4.
With an exponential rise in the popularity and availability of additive manufacturing (AM), a large focus has been directed toward research in this topic's movement, while trying to distinguish themselves from similar works by simply adding nanomaterials to their process. Though nanomaterials can add impressive properties to nanocomposites (NCs), there are expansive amounts of opportunities that are left unexplored by simply combining AM with NCs without discovering synergistic effects and novel emerging material properties that are not possible by each of these alone. Cooperative, evolving properties of NCs in AM can be investigated at the processing, morphological, and architectural levels. Each of these categories are studied as a function of the amplifying relationship between nanomaterials and AM, with each showing the systematically selected material and method to advance the material performance, explore emergent properties, as well as improve the AM process itself. Innovative, advanced materials are key to faster development cycles in disruptive technologies for bioengineering, defense, and transportation sectors. This is only possible by focusing on synergism and amplification within additive manufacturing of nanocomposites.  相似文献   

5.
采用激光增材制造(LDM)技术在TC4钛合金基体表面制备了TC4钛合金熔覆层,研究了不同扫描速率下制备的熔覆层的组织、显微硬度以及其在H_2SO_4溶液中的抗电化学腐蚀性能。结果表明:熔覆层的主要物相为α-Ti,且在β晶界附近生成了细针状α′马氏体,组织呈正交状网篮结构;随着扫描速率增大,熔覆层的平均显微硬度先增大后减小,腐蚀电流密度先降低后升高,电荷转移电阻先增大后减小,即其耐蚀性先增强后减弱;当扫描速率为10 mm/s时,熔覆层具有最大的平均显微硬度(390 HV)、最小的腐蚀电流密度(1.2337μA·cm-2)、最大的电荷转移电阻(11500Ω·cm-2),此时的熔覆层具有较好的抗电化学腐蚀性能。  相似文献   

6.
Engineered living materials (ELMs) combine living cells with polymeric matrices to yield unique materials with programmable functions. While the cellular platform and the polymer network determine the material properties and applications, there are still gaps in the ability to seamlessly integrate the biotic (cellular) and abiotic (polymer) components into singular materials, then assemble them into devices and machines. Herein, the additive-manufacturing of ELMs wherein bioproduction of metabolites from the encapsulated cells enhanced the properties of the surrounding matrix is demonstrated. First, aqueous resins are developed comprising bovine serum albumin (BSA) and poly(ethylene glycol diacrylate) (PEGDA) with engineered microbes for vat photopolymerization to create objects with a wide array of 3D form factors. The BSA-PEGDA matrix afforded hydrogels that are mechanically stiff and tough for use in load-bearing applications. Second, the continuous in situ production of l -DOPA, naringenin, and betaxanthins from the engineered cells encapsulated within the BSA-PEGDA matrix is demonstrated. These microbial metabolites bioaugmented the properties of the BSA-PEGDA matrix by enhancing the stiffness (l -DOPA) or resistance to enzymatic degradation (betaxanthin). Finally, the assembly of the 3D printed ELM components into mechanically functional bolts and gears to showcase the potential to create functional ELMs for synthetic living machines is demonstrated.  相似文献   

7.
Natural structure‐forming processes found in biological systems are fantastic and perform at ambient temperatures, in contrast with anthropogenic technologies that commonly require harsh conditions. A new research direction “bioprocess‐inspired fabrication” is proposed to develop novel fabrication techniques for advanced materials. Enamel, an organic–inorganic composite biomaterial with outstanding mechanical performance and durability, is formed by repeating the basic blocks consisting of columnar hydroxyapatite or fluorapatite and an organic matrix. Inspired by the enamel formation process, a microscale additive manufacturing method is proposed for achieving a multilayered organic–inorganic columnar structure. In this approach, rutile titanium dioxide (TiO2) nanorods, polymers, and graphene oxide (GO) are sequentially assembled in a layer‐by‐layer fashion to form an organic–inorganic structure. In particular, GO serves as a substrate for TiO2 nanorods and interacts with polymers, jointly leading to the strength of the composites. Impressively, this enamel‐like structure material has hardness (1.56 ± 0.05 GPa) and ultrahigh Young's modulus (81.0 ± 2.7 GPa) comparable to natural enamel, and viscoelastic property (0.76 ± 0.12 GPa) superior to most solid materials. Consequently, this biomimetic synthetic approach provides an in‐depth understanding for the formation process of biomaterials and also enables the exploration of a new avenue for the preparation of organic–inorganic composite materials.  相似文献   

8.
This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a single-step photoreduction process, integration of pre-formed MeNPs into 2PP resin, and site-selective MeNPs decoration of 3D 2PP structures. In the in situ formation strategy, a phase-transfer method is applied to transfer silver and copper ions from an aqueous phase into a toluene solvent to disperse them in photoreactive monomers.The addition of a photosensitive dye, coumarin 30, facilitated the reduction of silver ions and improved the distribution of silver nanoparticles (AgNPs). This strategy is successfully used to produce other MeNPs, such as Cu and Au. The integration of pre-formed MeNPs enabled highly controlled NP size distribution within the 2PP 3D structures with high-fidelity To enable selective decoration of 2PP 3D surfaces with MeNPs, a multimaterial strategy is developed, with one of the resins designed for thiol-ene reaction, which demonstrated selective binding to AuNPs. The successful development of complementary strategies for integration of MeNPs into 2PP resins offers exciting opportunities for fabrication of MeNP composites with sub-micron resolution for applications from photonics to metamaterials and drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号