首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The electrochemical carbon dioxide reduction reaction (E-CO2RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (Ti Bi NSs) with enhanced E-CO2RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4Ti3O12). We comprehensively evaluated Ti Bi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of Ti Bi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 and enhance the adsorption strength of *OCHO intermediate. The Ti Bi NSs deliver a high formate Faradaic efficiency (FEformate) of 96.3% and a formate production rate of 4032 µmol h−1 cm−2 at −1.01 V versus RHE. An ultra-high current density of −338.3 mA cm−2 is achieved at −1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn–CO2 battery using Ti Bi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm−2 and excellent charging/discharging stability of 27 h.  相似文献   

2.
Electrochemical CO2 reduction reaction (CO2RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core–shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm−2 with the superb FECO of 97% at −1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm−2, and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2RR and Zn-CO2 battery.  相似文献   

3.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   

4.
A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m2 g−1) and high pore volumes (0.394–1.591 cm3 g−1). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K and 1 bar. The CO2 adsorption capacity was found to be dependent on the microporosity and N contents.  相似文献   

5.
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2O3@Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2O3@Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm−2 at −1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2O3 interfaces of core-shell C@In2O3@Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.  相似文献   

6.
Electrochemical nitrate (NO3) reduction to ammonia (NH3) offers a promising pathway to recover NO3 pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable green NH3 production. However, the efficiency of electrocatalytic NO3 reduction to NH3 synthesis remains low for most of electrocatalysts due to complex reaction processes and severe hydrogen precipitation reaction. Herein, high performance of nitrate reduction reaction (NO3RR) is demonstrated on self-supported Pd nanorod arrays in porous nickel framework foam (Pd/NF). It provides a lot of active sites for H* adsorption and NO3 activation leading to a remarkable NH3 yield rate of 1.52 mmol cm−2 h−1 and a Faradaic efficiency of 78% at −1.4 V versus RHE. Notably, it maintains a high NH3 yield rate over 50 cycles in 25 h showing good stability. Remarkably, large-area Pd/NF electrode (25 cm2) shows a NH3 yield of 174.25 mg h−1, be promising candidate for large-area device for industrial application. In situ FTIR spectroscopy and density functional theory calculations analysis confirm that the enrichment effect of Pd nanorods encourages the adsorption of H species for ammonia synthesis following a hydrogenation mechanism. This work brings a useful strategy for designing NO3RR catalysts of nanorod arrays with customizable compositions.  相似文献   

7.
The electrocatalytic transformation of carbon dioxide (CO2) to formate is a promising route for highly efficient conversion and utilization of CO2 gas, due to the low production cost and the ease of storage of formate. In this work, porous poly(ionic liquid) (PPIL)-based tin-silver (Sn-Ag) bimetallic hybrids (PPILm-SnxAg10-x) are prepared for high-performance formate electrolytic generation. Under optimal conditions, an excellent formate Faradaic efficiency of 95.5% with a high partial current density of 214.9 mA cm−2 is obtained at −1.03 V (vs reversible hydrogen electrode). Meanwhile, the high selectivity of formate (>≈83%) is maintained in a wide potential range (>630 mV). Mechanistic studies demonstrate that the presence of Ag-species is vital for the formation, maintenance, and high dispersion of tetravalent Sn(IV)-species, which accounts for the active sites for CO2-to-formate conversion. Further, the introduction of Ag-species significantly enhances the activity by increasing the electron density near the Fermi energy level.  相似文献   

8.
Electrochemical CO2 reduction reaction (CO2RR) is a promising approach to convert CO2 to carbon-neutral fuels using external electric powers. Here, the Bi2S3-Bi2O3 nanosheets possessing substantial interface being exposed between the connection of Bi2S3 and Bi2O3 are prepared and subsequently demonstrate to improve CO2RR performance. The electrocatalyst shows formate Faradaic efficiency (FE) of over 90% in a wide potential window. A high partial current density of about 200 mA cm?2 at ?1.1 V and an ultralow onset potential with formate FE of 90% are achieved in a flow cell. The excellent electrocatalytic activity is attributed to the fast-interfacial charge transfer induced by the electronic interaction at the interface, the increased number of active sites, and the improved CO2 adsorption ability. These collectively contribute to the faster reaction kinetics and improved selectivity and consequently, guarantee the superb CO2RR performance. This study provides an appealing strategy for the rational design of electrocatalysts to enhance catalytic performance by improving the charge transfer ability through constructing a functional heterostructure, which enables interface engineering toward more efficient CO2RR.  相似文献   

9.
Tuning the coordination environment and geometric structures of single atom catalysts is an effective approach for regulating the reaction mechanism and maximize the catalytic efficiency of single-atom centers. Here, a template-based synthesis strategy is proposed for the synthesis of high-density NiNx sites anchored on the surface of hierarchically porous nitrogen-doped carbon nanofibers (Ni-HPNCFs) with different coordination environments. First-principles calculations and advanced characterization techniques demonstrate that the single Ni atom is strongly coordinated with both pyrrolic and pyridinic N dopants, and that the predominant sites are stabilized by NiN3 sites. This dual engineering strategy increases the number of active sites and utilization efficiency of each single atom as well as boosts the intrinsic activity of each active site on a single-atom scale. Notably, the Ni-HPNCF catalyst achieves a high CO Faradaic efficiency (FECO) of 97% at a potential of −0.7 V, a high CO partial current density (jCO) of 49.6 mA cm−2 (−1.0 V), and a remarkable turnover frequency of 24 900 h−1 (−1.0 V) for CO2 reduction reactions (CO2RR). Density functional theory calculations show that compared to pyridinic-type NiNx, the pyrrolic-type NiN3 moieties display a superior CO2RR activity over hydrogen evolution reactions, resulting in their superior catalytic activity and selectivity.  相似文献   

10.
Electrochemical reduction of CO2 (CO2RR) into value-added products is a promising strategy to reduce energy consumption and solve environmental issues. Formic acid/formate is one of the high-value, easy-to-collect, and economically viable products. Herein, the reconstructed Bi2O2CO3 nanosheets (BOCR NSs) are synthesized by an in situ electrochemical anion exchange strategy from Bi2O2SO4 as a pre-catalyst. The BOCR NSs achieve a high formate Faradaic efficiency (FEformate) of 95.7% at −1.1 V versus reversible hydrogen electrode (vs. RHE), and maintain FEformate above 90% in a wide potential range from −0.8 to −1.5 V in H-cell. The in situ spectroscopic studies reveal that the obtained BOCR NSs undergo the anion exchange from Bi2O2SO4 to Bi2O2CO3 and further promote the self-reduction to metallic Bi to construct Bi/Bi O active site to facilitate the formation of OCHO* intermediate. This result demonstrates anion exchange strategy can be used to rational design high performance of the catalysts toward CO2RR.  相似文献   

11.
Ni single-atom catalysts (SACs) are appealing for electrochemical reduction CO2 reduction (CO2RR). However, regulating the balance between the activity and conductivity remains a challenge to Ni SACs due to the limitation of substrates structure. Herein, the intrinsic performance enhancement of Ni SACs anchored on quasi-one-dimensional graphene nanoribbons (GNRs) synthesized is demonstrated by longitudinal unzipping carbon nanotubes (CNTs). The abundant functional groups on GNRs can absorb Ni atoms to form rich Ni–N4–C sites during the anchoring process, providing a high intrinsic activity. In addition, the GNRs, which maintain a quasi-one-dimensional structure and possess a high conductivity, interconnect with each other and form a conductive porous framework. The catalyst yields a 44 mA cm−2 CO partial current density and 96% faradaic efficiency of CO (FECO) at −1.1 V vs RHE in an H-cell. By adopting a membrane electrode assembly (MEA) flow cell, a 95% FECO and 2.4 V cell voltage are achieved at 200 mA cm−2 current density. This work provides a rational way to synthesize Ni SACs with a high Ni atom loading, porous morphology, and high conductivity with potential industrial applications.  相似文献   

12.
Single-atom nickel catalysts hold great promise in the application of electrocatalytic carbon dioxide reduction reaction (CO2RR), but suffer from the sluggish kinetics and serious competitive hydrogen evolution reaction (HER), which restrict their overall catalytic performance. Herein, we report a boron-bridging strategy to manipulate the atomic coordination structure and construct a single-atom nickel catalyst with an active center of NiN4B2 to realize excellent CO2RR performance. Density functional theory analysis suggests that the unique NiN4B2 sites with tuned electronic structure facilitate the adsorption of CO2 molecules and effectively suppress the HER pathway by increasing corresponding energy barrier. As-obtained Ni-SAs@BNC catalyst with a NiN4B2 structure exhibits significantly enhanced catalytic activity and selectivity than commonly used single-atom nickel catalysts with a NiN4 structure, especially at high applied potentials. A high current density of up to (214 ± 21) mA cm−2 at a potential of −1.2 V with a high CO Faraday efficiency (FECO) of ∼97% was achieved in a flow cell. This work inspires new insights into the rational design of atomic coordination structure of single-atom catalysts with tunable electronic structure for superior electrocatalytic activities.  相似文献   

13.
Electrocatalytic CO2 reduction reaction (CO2RR) toward formate production can be operated under mild conditions with high energy conversion efficiency while migrating the greenhouse effect. Herein, an integrated 3D open network of interconnected bismuthene arrays (3D Bi-ene-A/CM) is fabricated via in situ electrochemically topotactic transformation from BiOCOOH nanosheet arrays supported on the copper mesh. The resulted 3D Bi-ene-A/CM consists of 2D atomically thin metallic bismuthene (Bi-ene) in the form of an integrated array superstructure with a 3D interconnected and open network, which harvests the multiple structural advantages of both metallenes and self-supported electrodes for electrocatalysis. Such distinctive superstructure affords the maximized quantity and availability of the active sites with high intrinsic activity and superior charge and mass transfer capability, endowing the catalyst with good CO2RR performance for stable formate production with high Faradaic efficiency (≈90%) and current density (>300 mA cm?2). Theoretical calculation verifies the superior intermediate stabilization of the dominant Bi plane during CO2RR. Moreover, by further coupling anodic methanol oxidation reaction, an exotic electrolytic system enables highly energy-efficient and value-added pair-electrosynthesis for concurrent formate production at both electrodes, achieving substantially improved electrochemical and economic efficiency and revealing the feasibility for practical implementation.  相似文献   

14.
Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO of 94.91% at −0.80 V, the CO partial current density of ≈−15.35 mA cm−2, superior to that with outer Ni-C2N2 moiety (94.47%, ≈−12.06 mA cm−2), or without hollow structure (92.30%, ≈−5.39 mA cm−2), and high FECO of ≈98.41% at 100 mA cm−2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm−−2 is achieved.  相似文献   

15.
Electrochemical CO2 reduction reaction (CO2RR) is a promising strategy for waste CO2 utilization and intermittent electricity storage. Herein, it is reported that bimetallic Cu/Pd catalysts with enhanced *CO affinity show a promoted CO2RR performance for multi-carbon (C2+) production under industry-relevant high current density. Especially, bimetallic Cu/Pd-1% catalyst shows an outstanding CO2-to-C2+ conversion with 66.2% in Faradaic efficiency (FE) and 463.2 mA cm−2 in partial current density. An increment in the FE ratios of C2+ products to CO  for Cu/Pd-1% catalyst further illuminates a preferable C2+ production. In situ Raman spectra reveal that the atop-bounded CO is dominated by low-frequency band CO on Cu/Pd-1% that leads to C2+ products on bimetallic catalysts, in contrast to the majority of high-frequency band CO on Cu that favors the formation of CO. Density function theory calculation confirms that bimetallic Cu/Pd catalyst enhances the *CO adsorption and reduces the Gibbs free energy of the C C coupling process, thereby favoring the formation of C2+ products.  相似文献   

16.
Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2O3 nanosheets coated with polypyrrole (Bi2O3@PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2reduction to formate. Systematic material characterization demonstrated that Bi2O3@PPy precatalyst can evolve intoBi2O2CO3@PPy nanosheets with rich oxygen vacancies (Bi2O2CO3@PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2O2CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2O3@PPy-2 NSs derived Bi2O2CO3@PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at −0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.  相似文献   

17.
Developing stable catalysts with higher selectivity and activity within a wide potential range is critical for efficiently converting CO2 to ethanol. Here, the carbon-encapsulated CuNi nanoparticles anchored on nitrogen-doped nanoporous graphene (CuNi@C/N-npG) composite are designedly prepared and display the excellent CO2 reduction performance with the higher ethanol Faradaic effiency (FEethanol ≥ 60%) in a wide potential window (600 mV). The optimal cathodic energy efficiency (47.6%), Faradaic efficiency (84%), and selectivity (96.6%) are also obtained at −0.78 V versus reversible hydrogen electrode (RHE). Combining with the density functional theory (DFT) calculations, it is demonstrated that the stronger metal-support interaction (Ni-N-C) can regulate the surface electronic structure effectively, boosting the electron transfer and stabilizing the active sites (Cu0-Cuδ+) on the surface of CuNi@C/N-npG, finally realizing the controllable transition of reaction intermediates. This work may guide the designs of electrocatalysts with highly catalytic performance for CO2 reduction to C2+ products.  相似文献   

18.
Formic acid is receiving intensive attention as being one of the most progressive chemical fuels for the electrochemical reduction of carbon dioxide. However, the majority of catalysts suffer from low current density and Faraday efficiency. To this end, an efficient catalyst of In/Bi-750 with InOx nanodots load is prepared on a two-dimensional nanoflake Bi2O2CO3 substrate, which increases the adsorption of *CO2 due to the synergistic interaction between the bimetals and the exposure of sufficient active sites. In the H-type electrolytic cell, the formate Faraday efficiency (FE) reaches 97.17% at –1.0 V (vs reversible hydrogen electrode (RHE)) with no significant decay over 48 h. A formate Faraday efficiency of 90.83% is also obtained in the flow cell at a higher current density of 200 mA cm−2. Both in-situ Fourier transform infrared spectroscopy (FT-IR) and theoretical calculations show that the BiIn bimetallic site can deliver superior binding energy to the *OCHO intermediate, thereby fundamentally accelerating the conversion of CO2 to HCOOH. Furthermore, assembled Zn-CO2 cell exhibits a maximum power of 6.97 mW cm−1 and a stability of 60 h.  相似文献   

19.
It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc–air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core–shell structure, and S, N-doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm−2), superior specific capacity (815 mA h gZn−1), and excellent stability at 5 mA cm−2 for ≈900 h. The quasi-solid-state ZABs also exhibit a very high peak power density of 490 mW cm−2 and an excellent voltage round-trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.  相似文献   

20.
Palladium is a promising material for electrochemical CO2 reduction to formate with high Faradaic efficiency near the equilibrium potential. It unfortunately suffers from problematic operation stability due to CO poisoning on surface. Here, it is demonstrated that alloying is an effective strategy to alleviate this problem. Mesoporous PdAg nanospheres with uniform size and composition are prepared from the co-reduction of palladium and silver precursors in aqueous solution using dioctadecyldimethylammonium chloride as the structure-directing agent. The best candidate can initiate CO2 reduction at zero overpotential and achieve high formate selectivity close to 100% and great stability even at <-0.2 V versus reversible hydrogen electrode. The high selectivity and stability are believed to result from the electronic coupling between Pd and Ag, which lowers the d-band center of Pd and thereby significantly enhances its CO tolerance, as evidenced by both electrochemical analysis and theoretical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号