共查询到6条相似文献,搜索用时 3 毫秒
1.
Jun Di Jiexiang Xia Matthew F. Chisholm Jun Zhong Chao Chen Xingzhong Cao Fan Dong Zhen Chi Hailong Chen Yu‐Xiang Weng Jun Xiong Shi‐Ze Yang Huaming Li Zheng Liu Sheng Dai 《Advanced materials (Deerfield Beach, Fla.)》2019,31(28)
Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron–hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron–hole separation is not always clear. A model atomically thin structure of single‐unit‐cell Bi3O4Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk‐ and surface‐charge separation. Defect‐rich single‐unit‐cell Bi3O4Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3O4Br. After the preparation of single‐unit‐cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single‐unit‐cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next‐generation photocatalysts. 相似文献
2.
Shuguan Li Fang Chen Shengqi Chu Zeyu Zhang Jindi Huang Shengyao Wang Yibo Feng Cong Wang Hongwei Huang 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(5):2203559
Photocatalytic CO2 reduction is severely limited by the rapid recombination of photo-generated charges and insufficient reactive sites. Creating electric field and defects are effective strategies to inhibit charge recombination and enrich catalytic sites, respectively. Herein, a coupled strategy of ferroelectric poling and cationic vacancy is developed to achieve high-performance CO2 photoreduction on ferroelectric Bi2MoO6, and their interesting synergy-compensation relationship is first disclosed. Corona poling increases the remnant polarization of Bi2MoO6 to enhance the intrinsic electric field for promoting charge separation, while it decreases the CO2 adsorption. The introduced Mo vacancy (VMo) facilitates the adsorption and activation of CO2, and surface charge separation by creating local electric field. Unfortunately, VMo largely reduces the remnant polarization intensity. Coupling poling and VMo not only integrate their advantages, resulting in an approximately sevenfold increased surface charge transfer efficiency, but also compensate for their shortcomings, for example, VMo largely alleviates the negative effects of ferroelectric poling on CO2 adsorption. In the absence of co-catalyst or sacrificial agent, the poled Bi2MoO6 with VMo exhibits a superior CO2-to-CO evolution rate of 19.75 µmol g−1 h−1, ≈8.4 times higher than the Bi2MoO6 nanosheets. This work provides new ideas for exploring the role of polarization and defects in photocatalysis. 相似文献
3.
通过简易的一步水热法在不同制备温度(120℃、135℃、150℃)下成功合成了花状空心Sn3O4微球。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、表面积分析仪、紫外可见吸收光谱(UV-Vis)和光致发光谱 (PL)等测试手段对其形貌、结构、比表面积和光学性质进行了分析, 并以罗丹明B(RhB)为模型污染物研究了样品的光催化性能。实验结果显示: 中空微球结构不随水热合成温度发生明显改变; 随着水热合成温度的升高, 样品的UV-Vis吸收峰从384 nm蓝移至365 nm, 同时PL发射峰位的峰强逐渐降低。光催化结果显示, 在120℃合成的空心Sn3O4微球具备最优的光催化性能。 相似文献
4.
Codoping of N and O in ultrathin graphitic carbon nitride (g‐C3N4) nanosheets leads to an inner electric field. This field restrains the recombination of photogenerated carriers and, thus, enhances hydrogen evolution. The layered structure of codoped g‐C3N4 nanosheets (N‐O‐CNNS) not only provides abundant sites of contact with the reaction medium, but also decreases the distance over which the photogenerated electron–hole pairs are transported to the reaction interface. Quantum confinement in the ultrathin structure results in an increased bandgap and makes the photocatalytic reaction more favorable than bulk g‐C3N4. Under visible light irradiation, N‐O‐CNNS with 3 wt% Pt achieves a hydrogen evolution rate of 9.2 mmol g?1 h?1 and a value of 46.9 mmol g?1 h?1 under AM1.5 with 5 wt% Pt. Thus, this work paves the way for designing efficient nanostructures with increased separation/transfer efficiency of photogenerated carriers and, hence, increased photocatalytic activities. 相似文献
5.
Bi4Ti3O12铁电薄膜的MOCVD制备及其物理性质研究 总被引:2,自引:0,他引:2
采用常压MOCVD技术在(100)硅衬底上生长了具有(100)及(001)取各的钛酸铋(Bi4Ti3O12)薄膜。在适当的生长条件下可获得(100)取向膜,在750-800℃下退火可获得(001)择优取向膜。通过观察P-E电滞回线可确认膜的铁电性质,测得(100)取向膜的剩余极化强度为38μc/cm^2,矫顽场为45KV/cm。同时测量了钛酸铋薄膜的介电常数及损耗角正切。 相似文献
6.
Qichen Wang Xiongxiong Xue Yongpeng Lei Yuchao Wang Yexin Feng Xiang Xiong Dingsheng Wang Yadong Li 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(24)
Due to the earth abundance and tunable electronic properties, etc., transition metal oxides (TMOs) show attractive attention in oxygen evolution reaction. O‐vacancies (Vo) play important roles in tailoring the local surface and electronic environment to lower the activation barriers. Herein, an effective strategy is shown to enhance the oxygen evolution reduction (OER) performance on Co3O4 ultrathin nanosheets via combined cation substitution and anion vacancies. The oxygen‐deficient Fe‐Co‐O nanosheets (3–4 nm thickness) display an overpotential of 260 mV@10 mA cm?2 and a Tafel slope of 53 mV dec?1, outperforming those of the benchmark RuO2 in 1.0 m KOH. Further calculations demonstrate that the combined introduction of Fe cation and Vo with appropriate location and content finely tune the intermediate absorption, consequently lowering the rate‐limiting activation energy from 0.82 to as low as 0.15 eV. The feasibility is also proved by oxygen‐deficient Ni‐Co‐O nanosheets. This work not only establishes a clear atomic‐level correlation between cation substitution, anion vacancies, and OER performance, but also provides valuable insights for the rational design of highly efficient catalysts for OER. 相似文献