首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing robust and highly active bifunctional electrocatalysts for overall water splitting is critical for efficient sustainable energy conversion. Herein, heteroatom-doped amorphous/crystalline ruthenium oxide-based hollow nanocages (M-ZnRuOx (MCo, Ni, Fe)) through delicate control of composition and structure is reported. Among as-synthesized M-ZnRuOx nanocages, Co-ZnRuOx nanocages deliver an ultralow overpotential of 17 mV at 10 mA cm−2 and a small Tafel slope of 21.61 mV dec−1 for hydrogen evolution reaction (HER), surpassing the commercial Pt/C catalyst, which benefits from the synergistic coupling effect between electron regulation induced by Co doping and amorphous/crystalline heterophase structure. Moreover, the incorporation of Co prevents Ru from over-oxidation under oxygen evolution reaction (OER) operation, realizing the leap from a monofunctional to multifunctional electrocatalyst and then Co-ZnRuOx nanocages exhibit remarkable OER catalytic activity as well as overall water splitting performance. Combining theory calculations with spectroscopy analysis reveal that Co is not only the optimal active site, increasing the number of exposed active sites while also boosting the long-term durability of catalyst by modulating the electronic structure of Ru atoms. This work opens a considerable avenue to design highly active and durable Ru-based electrocatalysts.  相似文献   

2.
Electrochemical water splitting to produce hydrogen and oxygen, as an important reaction for renewable energy storage, needs highly efficient and stable catalysts. Herein, FeS2/CoS2 interface nanosheets (NSs) as efficient bifunctional electrocatalysts for overall water splitting are reported. The thickness and interface disordered structure with rich defects of FeS2/CoS2 NSs are confirmed by atomic force microscopy and high‐resolution transmission electron microscopy. Furthermore, extended X‐ray absorption fine structure spectroscopy clarifies that FeS2/CoS2 NSs with sulfur vacancies, which can further increase electrocatalytic performance. Benefiting from the interface nanosheets' structure with abundant defects, the FeS2/CoS2 NSs show remarkable hydrogen evolution reaction (HER) performance with a low overpotential of 78.2 mV at 10 mA cm−2 and a superior stability for 80 h in 1.0 m KOH, and an overpotential of 302 mV at 100 mA cm−2 for the oxygen evolution reaction (OER). More importantly, the FeS2/CoS2 NSs display excellent performance for overall water splitting with a voltage of 1.47 V to achieve current density of 10 mA cm−2 and maintain the activity for at least 21 h. The present work highlights the importance of engineering interface nanosheets with rich defects based on transition metal dichalcogenides for boosting the HER and OER performance.  相似文献   

3.
Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high-performance electrocatalysts for NITRR especially at low overpotentials. In this work, hierarchical nanospheres consisting of polycrystalline Iridium&copper (Ir&Cu) and amorphous Cu2O (CuxIryOz NS) have been fabricated. The optimal species Cu0.86Ir0.14Oz delivers excellent catalytic performance with a desirable NH3 yield rate (YR) up to 0.423 mmol h−1 cm−2 (or 4.8 mg h−1 mgcat−1) and a high NH3 Faradaic efficiency (FE) over 90% at a low overpotential of 0.69 V (or 0 VRHE), where hydrogen evolution reaction (HER) is almost negligible. The electrolyzer toward NITRR and hydrazine oxidation (HzOR) is constructed for the first time with an electrode pair of Cu0.86Ir0.14Oz//Cu0.86Ir0.14Oz, yielding a high energy efficiency (EE) up to 87%. Density functional theory (DFT) calculations demonstrate that the dispersed Ir atom provides active site that not only promotes the NO3 adsorption but also modulates the H adsorption/desorption to facilitate the proton supply for the hydrogenation of *N, hence boosting the NITRR. This work thus points to the importance of both morphological/structural and compositional engineering for achieving the highly efficient catalysts toward NITRR.  相似文献   

4.
Highly efficient and stable electrocatalysts from inexpensive and earth‐abundant elements are emerging materials in the overall water splitting process. Herein, cobalt iron hydroxide nanosheets are directly deposited on nickel foam by a simple and rapid electrodeposition method. The cobalt iron hydroxide (CoFe/NF) nanosheets not only allow good exposure of the highly active surface area but also facilitate the mass and charge transport capability. As an anode, the CoFe/NF electrocatalyst displays excellent oxygen evolution reaction catalytic activity with an overpotential of 220 mV at a current density of 10 mA cm?2. As a cathode, it exhibits good performance in the hydrogen evolution reaction with an overpotential of 110 mV, reaching a current density of 10 mA cm?2. When CoFe/NF electrodes are used as the anode and the cathode for water splitting, a low cell voltage of 1.64 V at 10 mA cm?2 and excellent stability for 50 h are observed. The present work demonstrates a possible pathway to develop a highly active and durable substitute for noble metal electrocatalysts for overall water splitting.  相似文献   

5.
In the near future, sustainable energy conversion and storage will largely depend on the electrochemical splitting of water into hydrogen and oxygen. Perceiving this, countless research works focussing on the fundamentals of electrocatalysis of water splitting and on performance improvements are being reported everyday around the globe. Electrocatalysts of high activity, selectivity, and stability are anticipated as they directly determine energy‐ and cost efficiency of water electrolyzers. Amorphous electrocatalysts with several advantages over crystalline counterparts are found to perform better in electrocatalytic water splitting. There are plenty of studies witnessing performance enhancements in electrocatalysis of water splitting while employing amorphous materials as catalysts. The harmony between the flexibility of amorphous electrocatalysts and electrocatalysis of water splitting (both the oxygen evolution reaction [OER] and the hydrogen evolution reaction [HER]) is one of the untold and unsummarized stories in the field of electrocatalytic water splitting. This Review is devoted to comprehensively discussing the upsurge of amorphous electrocatalysts in electrochemical water splitting. In addition to that, the basics of electrocatalysis of water splitting are also elaborately introduced and the characteristics of a good electrocatalyst for OER and HER are discussed.  相似文献   

6.
Rational design of highly efficient bifunctional electrocatalysts based on 3D transition‐metal‐based materials for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of great importance for sustainable energy conversion processes. Herein, a novel strategy involving outer and inner structural engineering is developed for superior water splitting via in situ vertical growth of 2D amorphous FePO4 nanosheets on Ni foam (Am FePO4/NF). Careful experiments and density functional theory calculations show that the inner and outer structural engineering contributing to the synergistic effects of 2D morphology, amorphous structure, conductive substrate, and Ni?Fe mixed phosphate lead to superior electrocatalytic activity toward OER and HER. Furthermore, a two‐electrode electrolyzer assembled using Am FePO4/NF as an electrocatalyst at both electrodes gives current densities of 10 and 100 mA cm?2 at potentials of 1.54 and 1.72 V, respectively, which is comparable to the best bifunctional electrocatalyst reported in the literature. The strategies, introduced in the present work, may open new opportunities for the rational design of other 3D transition‐metal‐based electrocatalyst through an outer and inner structural control to strengthen the electrocatalytic performance.  相似文献   

7.
Fabricating cost‐effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni0.85Se/CP, and NiSe‐Ni0.85Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe‐Ni0.85Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single‐phase NiSe/CP and Ni0.85Se/CP. A current density of 10 mA cm−2 at 1.62 V and a high stability can be obtained by using NiSe‐Ni0.85Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH can be more easily adsorbed on NiSe‐Ni0.85Se than on NiSe and Ni0.85Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases.  相似文献   

8.
Herein, the facile preparation of ultrathin (≈3.8 nm in thickness) 2D cobalt phosphate (CoPi) nanoflakes through an oil‐phase method is reported. The obtained nanoflakes are composed of highly ordered mesoporous (≈3.74 nm in diameter) structure and exhibit an amorphous nature. Attractively, when doped with nickel, such 2D mesoporous Ni‐doped CoPi nanoflakes display decent electrocatalytic performances in terms of intrinsic activity, and low kinetic barrier toward the oxygen evolution reaction (OER). Particularly, the optimized 10 at% Ni‐doped CoPi nanoflakes (denoted as Ni10‐CoPi) deliver a low overpotential at 10 mA cm?2 (320 mV), small Tafel slope (44.5 mV dec?1), and high stability for OER in 1.0 m KOH solution, which is comparable to the state‐of‐the‐art RuO2 tested in the same condition (overpotential: 327 mV at 10 mA cm?2, Tafel slope: 73.7 mV dec?1). The robust framework coupled with good OER performance enables the 2D mesoporous Ni10‐CoPi nanoflakes to be a promising material for energy conversion applications.  相似文献   

9.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

10.
Electrochemical water splitting offers an attractive approach for hydrogen production. However, the lack of high-performance cost-effective electrocatalyst severely hinders its applications. Here, a multinary high-entropy intermetallic (HEI) that possesses an unusual periodically ordered structure containing multiple non-noble elements is reported, which can serve as a highly efficient electrocatalyst for hydrogen evolution. This HEI exhibits excellent activities in alkalinity with an overpotential of 88.2 mV at a current density of 10 mA cm−2 and a Tafel slope of 40.1 mV dec−1, which are comparable to those of noble catalysts. Theoretical calculations reveal that the chemical complexity and surprising atomic configurations provide a strong synergistic function to alter the electronic structure. Furthermore, the unique L12-type ordered structure enables a specific site-isolation effect to further stabilize the H2O/H* adsorption/desorption, which dramatically optimizes the energy barrier of hydrogen evolution. Such an HEI strategy uncovers a new paradigm to develop novel electrocatalyst with superior reaction activities.  相似文献   

11.
非晶态Ni-Mo-Fe合金作电解水析氢反应电极   总被引:5,自引:0,他引:5  
用电沉积法制备非晶态Ni_(41.5)Mo_(35.5)Fe_(23.0)合金电极。该合金电极在30wt%KOH溶液,70℃作析氢反应阴极,实验研究结果表明,合金电极对氢的析出反应具有优良的电催化性能。在200mA/cm ̄2电流密度下析氢反应过电位约90mV,在连续电解和间歇电解条件下有良好的电化学稳定性。  相似文献   

12.
Exploring earth‐abundant bifunctional electrocatalysts with high efficiency for water electrolysis is extremely demanding and challenging. Herein, density functional theory (DFT) predictions reveal that coupling Ni with Ni3C can not only facilitate the oxygen evolution reaction (OER) kinetics, but also optimize the hydrogen adsorption and water adsorption energies. Experimentally, a facile strategy is designed to in situ fabricate Ni3C nanosheets on carbon cloth (CC), and simultaneously couple with Ni nanoparticles, resulting in the formation of an integrated heterostructure catalyst (Ni–Ni3C/CC). Benefiting from the superior intrinsic activity as well as the abundant active sites, the Ni–Ni3C/CC electrode demonstrates excellent bifunctional electrocatalytic activities toward the OER and hydrogen evolution reaction (HER), which are superior to all the documented Ni3C‐based electrocatalysts in alkaline electrolytes. Specifically, the Ni–Ni3C/CC catalyst exhibits the low overpotentials of only 299 mV at the current density of 20 mA cm?2 for the OER and 98 mV at 10 mA cm?2 for the HER in 1 m KOH. Furthermore, the bifunctional Ni–Ni3C/CC catalyst can propel water electrolysis with excellent activity and nearly 100% faradic efficiency. This work highlights an easy approach for designing and constructing advanced nickel carbide‐based catalysts with high activity based on the theoretical predictions.  相似文献   

13.
Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H2) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm−2 at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H2 production. This strategy provides an advanced material platform for energy and environmental applications.  相似文献   

14.
Metal oxides of earth‐abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy‐conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three‐stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N‐doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5Co0.5Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec?1 and an overpotential of 257 mV for 10 mA cm?2 and superior ORR activity with a large limiting current density of ?5.25 mA cm?2 at 0.6 V. A fabricated Zn–air battery delivers a specific capacity of 756 mA h gZn?1 (corresponding to an energy density of 904 W h kgZn?1), a peak power density of 86 mW cm?2 and can be cycled over 120 h at 10 mA cm?2. Other two amorphous bimetallic, Ni0.4Fe0.6Ox and Ni0.33Co0.67Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.  相似文献   

15.
Evaluating the alkaline water electrolysis (AWE) at 50–80 °C required in industry can veritably promote practical applications. Here, the thermally induced complete reconstruction (TICR) of molybdate oxygen evolution reaction (OER) pre-catalysts at 51.9 °C and its fundamental mechanism are uncovered. The dynamic reconstruction processes, the real active species, and stereoscopic structural characteristics are identified by in situ low-/high-temperature Raman, ex situ microscopy, and electron tomography. The completely reconstructed (CR) catalyst (denoted as cat.-51.9) is interconnected by thermodynamically stable (oxy)hydroxide nanoparticles, with abundant boundaries and low crystallinity. For alkaline OER, cat.-51.9 exhibits a low overpotential (282.3 mV at 20 mA cm−2, 25.0 °C) and ultrastable catalysis at 51.9 °C (250 h, with a negligible activity decay of 19.6 µV h−1). The experimental observations combined with theoretical analyses confirm the fast catalytic kinetics enabled by the co-effect of boundaries and vacancies. The coupled cat.-51.9 and MoO2-Ni hydrogen-evolving arrays provide stable electrolysis operation at 51.9 °C for 220 h. This work uncovers new reconstruction phenomenon of pre-catalysts under realistic conditions and exceptional durability of CR catalysts toward practical high-temperature AWE.  相似文献   

16.
17.
Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3O4) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm−2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g−1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3O4 as a low-cost material for green hydrogen electrocatalysis at large scales.  相似文献   

18.
Perovskite oxides stand out as emerging oxygen evolution reaction (OER) catalysts on account of their effective electrocatalytic performance and low costs. Nevertheless, perovskite oxides suffer from severe bubble overpotential and inhibited electrochemical performance in large current densities due to their small specific surface areas and structural compactness. Herein, the study highlights the electrospun nickel-substituted La0.5Sr0.5FeO3-δ (LSF) porous perovskite nanofibers, that is, La0.5Sr0.5Fe1-xNixO3-δ (denoted as ES-LSFN-x, x = 0, 0.1, 0.3, and 0.5), as high-performance OER electrocatalysts. The most effective La0.5Sr0.5Fe0.5Ni0.5O3-δ (ES-LSFN-0.5) nanofibers suggest a larger specific surface area, higher porosity, and faster mass transfer than the counterpart sample prepared by conventional sol–gel method (SG-LSFN-0.5), showing notably increased geometric and intrinsic activities. The bubble visualization results demonstrate that the enriched and nano-sized porosity of ES-LSFN-0.5 enables reinforced aerophobicity and rapid detachment of oxygen bubbles, thereby reducing the bubble overpotential and enhancing the electrochemical performance. As a result, the ES-LSFN-0.5-based anion exchange membrane water electrolysis delivers a superior stability of 100 h while the SG-LSFN-0.5 counterpart degrades rapidly within 20 h under a current density of 100 mA cm−2. The results highlight the advantage of porous electrocatalysts in optimizing the performance of large current density water electrolysis devices by reducing the bubble overpotential.  相似文献   

19.
《工程(英文)》2020,6(6):653-679
In the context of the current serious problems related to energy demand and climate change, substantial progress has been made in developing a sustainable energy system. Electrochemical hydrogen–water conversion is an ideal energy system that can produce fuels via sustainable, fossil-free pathways. However, the energy conversion efficiency of two functioning technologies in this energy system—namely, water electrolysis and the fuel cell—still has great scope for improvement. This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen–water energy system and discusses the key barriers in the hydrogen- and oxygen-involving reactions that occur on the catalyst surface. By means of the scaling relations between reactive intermediates and their apparent catalytic performance, this article summarizes the frameworks of the catalytic activity trends, providing insights into the design of highly active electrocatalysts for the involved reactions. A series of structural engineering methodologies (including nanoarchitecture, facet engineering, polymorph engineering, amorphization, defect engineering, element doping, interface engineering, and alloying) and their applications based on catalytic performance are then introduced, with an emphasis on the rational guidance from previous theoretical and experimental studies. The key scientific problems in the electrochemical hydrogen–water conversion system are outlined, and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.  相似文献   

20.
Well‐designed hybrid materials based on noble metal‐free elements have great potential to generate hydrogen (H2) and oxygen (O2) sustainably via overall water splitting for developing practical energy‐related technologies. Herein, an accessible method is presented to synthesize nickel diselenide (NiSe2) ultrathin nanowires decorated with amorphous nickel oxide nanoparticles (NiOx NPs) as multifunctional electrocatalysts (NSWANs) for hydrogen and oxygen evolution reaction (HER and OER). The NSWANs exhibit quite low HER and OER overpotentials of 174 and 295 mV, respectively, holding the current density of 20 mA cm?2 for 24 h continuous operations in alkaline media. Meanwhile, a cell voltage of 1.547 V at the current density of 10 mA cm?2 for overall water splitting has been achieved by the NSWANs for the practical application, which could maintain fascinating activity of 20 mA cm?2 for 72 h without degradation. The decorated NiOx NPs not only prevent the NiSe2 from further oxidation but also expose requisite active sites for electrocatalytic process. It is believed that this study may provide a valuable strategy to design high‐efficiency electrocatalysts and expand the applications of selenide‐based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号