首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
General relationships between organisms and their habitat, consistent across spatial scales and regions, suggest the existence of repeatable ecological processes and are useful for the management of stream networks. From published data, we defined four guilds of European fish species with contrasting preferences for microhabitat hydraulics within stream reaches. At the scale of stream reaches and across 139 French sites (590 460 fishes sampled), we analysed how fish guild proportions were related to reach hydraulics (proportion of pools vs. riffles %POOL; median discharge by unit width Q50/W). The strongest correlations were observed between two fish guilds and %POOL (p < 0.001, r2 ≥ 0.41) and between one fish guild proportion and Q50/W (p < 0.001, r2 = 0.10). These reach–scale relationships were consistent across six large French basins, and consistent with the analyses made at the microhabitat scale. Therefore, microhabitat preferences for hydraulics are strong enough to generate consistent reach‐scale community responses to hydraulics across regions, despite the influence of other filters such as temperature, nutrient levels or history. The distribution of basic geomorphic features (pools, riffles) in streams and their modification (by dams, weirs and dikes) can modify the proportion of fish guilds by up to 80%, probably contributing to the long‐term decline of riffle‐dwelling species in Europe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We developed an individual-based model (IBM) to understand the effects of hydropeaking on growth, survival and distribution of age 0+ to 1+ juveniles for high-conservation value populations of native brown trout (Salmo trutta) and Atlantic salmon (S. salar) in river Gullspång, Sweden. We parameterized and applied inSTREAM (7.2-SD) and calibrated the model by comparing predicted versus observed growth under the current hydropeaking regime (n=>1,200 model fish for 365 days). Our objective was to model growth, survival and distribution under flow scenarios with and without hydropeaking. We observed that hydropeaking generally resulted in modest (~10%) negative effects on growth and survival of both species. Survival was more affected than was growth, smaller fish more affected than larger fish. On-peak (high) hydropeaking flows resulted in less profitable feeding conditions (less growth) and higher predation (lower survival). Thus, inSTREAM 7.2-SD appears to capture ecologically-relevant behavioral patterns under hydropeaking, for example, habitat selection, in response to rapid flow changes. Understanding such patterns for large rivers via manipulative field studies, even if possible, would be time-consuming and costly. Our study demonstrates the potential of IBMs as powerful tools for testing research questions and assessing and prioritizing alternative management strategies in regulated rivers.  相似文献   

3.
Philosophically, the natural flow regime concept is tremendously appealing; however, its application can be challenging for many biologists without the expertise or resources to handle such approaches on their own. This is particularly true on hydropeaking rivers, where incorporating natural flow is sometimes challenging. Additional challenges include our limited understanding of how individual flow components relate to geomorphic and ecological processes. Supplementary to environmental flow approaches is understanding that many hydropeaking rivers are ecologically two different rivers in one: the low flow and high peaking flow. Taxa that require a narrow range of water velocities or cannot withstand rapid changes in discharge would likely be eliminated or competitively disadvantaged under such harsh environmental conditions. As the low and peak flows diverge, the two rivers become increasingly different ecologically, and there will likely be fewer taxa that can withstand such abiotic variability. Deviations from a natural flow regime may result in new constraints on certain fishes and invertebrates, but this does not necessarily mean a loss of productive fish habitat. Viewing hydropeaking rivers as two rivers in one and the risks associated with high to low flow ratios may serve as a more practical and useful perspective towards maintaining altered yet productive rivers while representing a step towards improving the management river ecosystems. © Her Majesty the Queen in Right of Canada 2013.  相似文献   

4.
Deviation from a river's natural flow regime is considered to be one of the most serious and continuing threats to lotic ecosystems. Peaking hydroelectric facilities, which are designed to adjust the level of power generation in accordance with hourly energy demand, can dramatically alter flows and temperatures and ultimately lead to changes in the quantity and quality of habitat available to fish. In this study, we examine the spatial distribution of river fishes, benthic invertebrates and organic matter along lateral and longitudinal gradients in two hydropeaking and eight natural Lake Superior tributaries in Ontario, Canada. This study demonstrates that (i) hourly variation in flow, caused by hydropeaking, results in a varial zone that supports significantly fewer fish than the adjacent permanently wetted channel and (ii) strong longitudinal gradients in fish biomass, particularly for sedentary species such as slimy sculpin (Cottus cognatus), exist in regulated rivers, and fish biomass is up to four times greater at sites directly below the peaking dams than at sites further downstream or in nearby natural rivers. Gradients in the spatial distribution of fishes closely follow changes in food resources such as benthic organic matter and invertebrates, suggesting that these gradients are driven by spatial shifts in food availability and are ultimately caused by gradients in abiotic habitat variables. Monitoring and assessment efforts should take into account that lateral and longitudinal gradients exist in regulated rivers, and this understanding must be incorporated into sampling programmes. Failing to do so could alter the interpretation of river productivity, integrity and health. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hydropeaking operations or accidental shutdown in hydropower (HP) plants lead to rapid reduction in river flows downstream HP outlets and cause severe stranding of biota. Stranding of fish in dewatered riverbeds is a major consequence of hydropeaking. To mitigate the direct negative impacts of accidental powerplant shutdown implementation of automated by-pass valves (BPVs) is suggested as an efficient measure. Proper configuration and operation of the BPV is crucial. At present, more than 110 Norwegian HP plants have BPVs as a license requirement. We found that the function of the BPVs in small-scale HP plants (HPPs <10 MW) were found to be inadequate. Re-configuration to better mitigate the ecological impacts were required to minimize stranding risk for juvenile salmonids. The valves were found to come into operation too late, did not open automatically, or were found to reduce the flow too rapidly. Hence, the function of the valves did not meet best practice. This is alarming seen both from a governance perspective as well as from an ecological standpoint. Our second objective was to develop a generic cost-efficient formula for BPVs configuration to dampen severe flow dewatering in case of HP fallout. Our configuration formula is adjustable to meet down-ramping flow rules, and hence may helps to mitigate stranding of key species in rivers. For most of the large-scale HPPs (>10 MW), the BPVs seems to operate as expected, namely to secure base-flow until the HP turbine is re-started and hence mitigate the most severe dewatering events. Potentially more than 650 HPPs in Norway, and hence several thousand of river km downstream HPP outlets may need well-operated BPVs to mitigate accidental stranding of riverine biota worldwide.  相似文献   

6.
Intermittent water releases from hydropower plants, called hydropeaking, negatively affect river biota. The impacts mainly depend on hydrological alterations, but changes in physical habitat conditions are suspected to be co-responsible. For example, hydropeaking accompanied by a sudden change of water temperature in the downstream river—called thermopeaking—is also presumed to impair aquatic ecosystems. Still, knowledge about these thermopeaking impacts on aquatic species and life-stages is limited. We performed flume experiments under semi-natural conditions to fill this knowledge gap, simulating single hydropeaking events with a change in water temperature. As response parameters, we quantified the drift and stranding of early life-stages of European grayling (Thymallus thymallus L.), a key fish species of Alpine hydropeaking rivers. Hydropeaking events with a decrease in water temperature (“cold thermopeaking”) led to significantly higher downstream drift (mean = 51%) than events with increasing water temperature (“warm thermopeaking”, mean = 27%). Moreover, during cold thermopeaking, a comparably high fish drift was recorded up to 45 min after the start of peak flows. In contrast, drift rates quickly decreased after 15 min during warm thermopeaking. Remarkably, the spatial distribution of downstream drift along gravel bars during cold thermopeaking showed the opposite pattern compared to those triggered by warm thermopeaking events indicating different behavioral responses. Furthermore, the stranding rates of the cold thermopeaking trials were twice as high (mean = 31%) as those of the warm thermopeaking experiments (mean = 14%). The outcomes present vital information for improving mitigation measures and adapting environmental guidelines.  相似文献   

7.
Hydropower regulations can have dramatic impacts on river ecological communities. The operation of hydropower stations is related to power demands, but their releases in the receiving water body causes sudden changes in flow, which in turn affect the biota. The effects of such flow variations on benthic invertebrates is not fully understood. Here, we studied the effects of duration and intensity of hydropeaking on benthic invertebrates in two rivers over a 3.5‐year period. We used both quantitative (Surber) and semiquantitative (kick samples) sampling methods to compare the ramping zone with the permanently water covered zone downstream of the hydropower plant, and with corresponding unaffected upstream areas. The ramping zone had a different invertebrate community composition and lower benthic density than other areas, especially after hydropeaking. Mayflies and chironomids were most negatively affected by hydropeaking and oligochaetes largely unaffected. Chironomids and the mayfly Baetis rhodani were able to recolonize the ramping zone and almost reach densities similar to deeper areas within 48 days following hydropeaking. The relative abundance of filter feeders tended to increase and gatherers/collectors tended to decrease from the ramping zone towards the deep, permanently water covered areas. In corresponding areas upstream of the power plant, the relative abundance of different functional feeding groups was the same in the mid‐channel and shore sites. Our study shows that hydropeaking has clear impacts on the functional structure of benthic invertebrates below the power plants. The ecological impact of hydropeaking on invertebrate communities should thus be taken into account, for example, by reducing the amplitude and duration of flow fluctuations.  相似文献   

8.
For many years, navigable lowland rivers have been embanked artificially or suffered from substantial shipping wave action, leading to habitat degradation. Recently, riparian habitats were restored by creating foreshores and spawning grounds in the river Yser, a lowland river in Flanders, Belgium. The aim of this paper was to evaluate the role of these restored habitats for spawning and nursery of juvenile fish. To cover a wide range of anthropogenic disruption, four riparian mesohabitat types were selected and compared, ranging from semi‐natural over artificial spawning grounds and foreshores to artificial embankments. Juvenile fish were subjected to sampling by using electrofishing between June and September 2009 at different microhabitats located in five sites of each riparian mesohabitat type. Juvenile fish strongly preferred natural riparian habitats, whereas artificial embankments showed the lowest species richness, abundance and functional organization of juvenile fish species. Restored riparian habitats appeared to be an appropriate alternative for artificial embankments in navigable lowland rivers but still score significantly less than natural habitats. Juvenile fish avoided bare microhabitats but did not prefer any other microhabitat type (reed, woody or grassy vegetation), emphasizing the importance of microhabitat diversity. This paper provides valuable insights into riparian habitat restoration to river managers and stakeholders. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Hydroelectric dam operation can alter discharge and temperature patterns, impacting fish populations downstream. Previous investigations into the effects of river regulation on fish have focused on a single species within a river, yet different results among studies suggest the potential for species‐specific impacts. Here, we compare the impacts of two different hydropeaking regimes relative to a naturally flowing river on three ecologically important members of the forage fish community: longnose dace (Rhinichthys cataractae), slimy sculpin (Cottus cognatus) and trout‐perch (Percopsis omiscomaycus). Annual growth, estimated from otolith back‐calculations, was higher for each of the species in the regulated river relative to the naturally flowing river but did not differ between hydropeaking regimes. Condition was assessed using weight–length relationships and differed between rivers for each species, and between hydropeaking regimes for longnose dace and slimy sculpin. Survival of longnose dace and slimy sculpin was lower in the regulated river relative to the naturally flowing river, but comparable between rivers for trout‐perch. Annual growth was significantly related to mean summer discharge in the regulated river and to mean summer water temperature in the naturally flowing river for each species, and significantly different slopes among species indicate species‐specific responses to discharge and temperature alterations. This study demonstrates different biological responses among fish species within rivers to regulation in general, as well as to specific hydropeaking regimes. Future studies should focus on multiple species and multiple indicators of fish health to more fully characterize the impacts of river regulation on downstream fish communities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Radiotelemetry was used to investigate seasonal movement and home range of brown trout Salmo trutta (size range 188–420 mm fork length, N = 30) in two reaches of the Noguera Pallaresa River (Ebro Basin, north‐east Spain) subjected to different flow regulation schemes. NP‐1 reach is a bypassed section with near natural flow conditions, whereas the downstream reach NP‐2 is subjected to daily pulsed flow discharge (i.e., hydropeaking) from an upstream hydropower station. Significant differences in home range size (95% kernel estimates) and seasonal movement pattern between study reaches were found. Mean home range size was (μ ± SE) 112.1 ± 11.5 m in the bypassed reach NP‐1 and increased significantly in the hydropeaking reach NP‐2 up to 237.9 ± 37.2 m. There was a large individual variability in fish home range size within reaches. Most of the seasonal differences in fish movement among reaches were associated with the spawning season. Pulsed discharge events in NP‐2 during daytime in summer (lasting about 3 hr and increasing water flow from 1 to 20 m3/s) did not cause significant displacements in either upstream or downstream direction during the duration of the event. Our results highlight the importance of habitat connectivity in hydropeaking streams due to the need of brown trout to move large distances among complementary habitats, necessary to complete their life cycle, compared with unregulated or more stable streams.  相似文献   

12.
Climate change asks for the reduction in the consumption of fossil‐based fuels and an increased share of non‐regulated renewable energy sources, such as solar and wind power. In order to back up a larger share of these intermittent sources, ‘battery services’ are needed, currently provided only in large scale by hydropower, leading to more rapid and frequent changes in flows (hydropeaking) in the downstream rivers. Increased knowledge about the ecosystem response to such operations and design of cost‐effective measures is needed. We analysed the response of fish communities to hydropeaking (frequency, magnitude, ramping rate and timing) and the interaction with the habitat conditions in Austrian rivers. An index of biotic integrity (Fish Index Austria) was used to compare river sections with varying degrees of flow fluctuations under near‐natural and channelized habitat conditions. The results showed that habitat conditions, peak frequency (number of peaks per year), ramping rate (water level variation) and interaction between habitat and ramping rate explained most of the variation of the Fish Index Austria. In addition, peaking during the night seems to harm fish more than peaking during the day. Fish communities in hyporhithral and epipotamal types of rivers are more affected by hydropeaking than those in metarhithral type of rivers. The results support the findings of other studies that fish stranding caused by ramping rates >15 cm h?1 are likely to be the main cause of fish community degradation when occurring more often than 20 times a year. While the ecological status degrades with increasing ramping rate in nature‐like rivers, fish communities are heavily degraded in channelized rivers regardless of the ramping rate. The mitigation of hydropeaking, therefore, requires an integrative approach considering the combined effects of hydrological and morphological alterations on fish. © 2014 The Authors. River Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

13.
Fluctuating flows common in hydropeaking operations present biota with contrasting and challenging environments. Taxa that require a narrow range of water velocity or are not adapted to withstand sudden changes in discharge will likely be eliminated or competitively disadvantaged under such circumstances, perhaps leading to reduced biodiversity. I investigated the whole river, longitudinal and lateral patterns of benthic invertebrate abundance, Shannon–Wiener diversity, and rarefied taxa density and richness in the hydropeaking Magpie River and 16 neighbouring natural rivers. The Magpie River had greater abundances of benthic invertebrates than natural rivers, particularly near the dam. General differences in benthic community characteristics were largely based on the near absence of Odonata and Plecoptera and an abundance of snails and worms in the Magpie River. Family density, richness and diversity were greater in the regulated Magpie River and unregulated upper Magpie River than found in natural rivers. Longitudinally, family density, diversity and particularly richness increased downstream in the Magpie River. Laterally, diversity did not show any trends with increasing depth along transects, except at near the dam where it decreased sharply with depth, velocity, and an abundance of filter feeding invertebrates. Taxa density did not show any lateral trends in natural rivers, whereas in the Magpie River, it increased with water velocity and depth. The results of this study are contradictory to the general findings of others implying reduced biodiversity below hydropower facilities. Possible explanations are examined and contrasted with other examinations of benthic invertebrate response below hydropeaking dams. © Her Majesty the Queen in Right of Canada 2012.  相似文献   

14.
Hydropeaking negatively affects fish assemblages, but knowledge gaps still constrain our ability to rank and mitigate the impacts of different hydropower operation regimes at particular power plants. This is especially relevant for species and rivers for which the effects of hydropeaking are less investigated, such as the Iberian Cypriniformes and Mediterranean rivers. Recognizing the potential of the hydropeaking tool method (HT) developed for salmonids to systematically assess hydropeaking impacts, we adapted it for Iberian Cypriniformes. The general tool framework developed for the salmonids was kept for the Cypriniformes, with the combined use of factors describing the hydromorphological effects and factors related with fish vulnerability to assess hydropeaking impact. Effect and vulnerability factors were developed for Iberian cyprinids and leuciscids establishing preliminary thresholds for each indicator with three different levels of hydropeaking impact on the targeted taxa. The proposed factors and thresholds were critically reviewed and ranked by experts on Iberian Cypriniformes ecology and Mediterranean rivers functioning. Overall, the timing and distribution of peaking events were ranked higher by the experts in the effect factors, whereas the population size of barbel and smaller native Cypriniformes, as well as the degree of limitations in recruitment, were ranked higher in the vulnerability factors. Although there was some divergence in the expert opinions, a final set of effect and vulnerability factors was established, that retained most of the ones proposed for the salmonids, but included new ones, particularly for vulnerability. The present study provided a comprehensive, straightforward, and systematic assessment tool for evaluating hydropeaking impacts on Iberian Cypriniformes.  相似文献   

15.
Alteration in the river flow regime due to intermittent hydropower production (i.e., hydropeaking) leads to biodiversity loss and ecosystem degradation worldwide. Due to the increasing shear of volatile green energy (i.e., wind and solar), hydropeaking frequency is deemed to increase in the coming decades. However, our mechanistic understanding of how the frequency of repeated hydropeaking (i.e., series of multiple events) affects ecological processes is still limited. Here, we reflect on the impacts of altered flow frequency and relative duration on the persistency of aquatic habitats. We focus on the habitats at patch-scale, being this the scale representing what organisms perceive when interacting with their environment. With a showcase we explore a temporally explicit approach to quantify altered habitat dynamics at patch-scale due to hydropeaking. We then review how changes in habitat dynamics and persistency may affect ecological processes. Our findings suggest that (i) a time-series approach allows to account for the inherent multi-event nature of hydropeaking; (ii) hydropeaking can increase the dynamics of single habitat patches by at least one order of magnitude if compared to unregulated rivers; (iii) altered habitat dynamics at the patch scale can affect the survival of more sessile species and life cycle stages (e.g., invertebrates) or the energy budget of mobile species and life cycle stages (e.g., adult fish). However, the ecological significance and potential environmental thresholds of patch-scale dynamics and persistency are still poorly investigated and need further attention. Moreover, methods for the aggregation of habitat dynamics and persistency from the patch to the reach-scale are not available yet.  相似文献   

16.
This article proposes and demonstrates a new classification system of fish population level effects of hydropeaking operations in rivers. The classification of impacts is developed along two axes; first, the hydromorphological effect axis assesses the ecohydraulic alterations in rivers introduced by rapid and frequent variations in flow and water level, second the vulnerability axis assesses the site-specific vulnerability of the fish population. Finally, the population level impact is classified into four classes from small to very large by combining the two axes. The system was tested in four rivers in Norway exposed to hydropeaking, and they displayed a range of outcomes from small to very large impacts on the salmon populations. The river with a relatively high base flow and ramping restrictions scored better than rivers with the lower base flow or limited ramping restrictions, indicating that hydropeaking effects can be mitigated while maintaining high hydropower flexibility. Most effect factors could easily be calculated from timeseries of discharge and water level, whereas the use of hydraulic models to estimate potential stranding areas may require more work. The vulnerability factors are mainly qualitative and depend more heavily on expert judgments and are thus more uncertain. The system was deemed suitable for the purpose of supporting management decisions for rivers exposed to hydropeaking operations. It evaluates the severity of the additional pressures due to hydropeaking operations and proved useful to identify mitigating measures. While the system was developed for Atlantic salmon river systems, it could be adapted to other species or systems.  相似文献   

17.
The margins of large rivers are usually impacted by human settlements and activities, which may affect the occupancy and use of riparian habitats by many organisms. Among vertebrates, amphibians are likely the most sensitive to environmental changes, and they can be used as a model to identify attributes of the riparian habitats that are important for the maintenance of high species richness and functional diversity. We studied anuran assemblages in four large rivers of the Velhas River basin in southeastern Brazil during one year, focusing on features of the rivers and riparian habitats that influence species distribution. We tested whether a river under greater anthropogenic impact would shelter less species compared to three rivers of equivalent size under lower impact level, and whether lower species richness related to lower availability of preferred microhabitats. We found soil type at river margin and riparian vegetation structure to be the main factors influencing anuran distribution. Species richness was positively related to microhabitat diversity and availability of preferred microhabitats, which were the lowest in the most impacted river. Most species recorded at the rivers were not breeding there, and were present in larger numbers during the dry season, when temporary bodies of water dry at the vicinities of the large rivers. Conservation of a broad extension of the riparian habitat (200 m or more) would be efficient both to provide appropriate microhabitats for anurans and to maintain connectivity between breeding sites and large, permanent rivers used by several species during the dry season. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In recent years, the relationship between hydraulics associated with the substrate and fish swimming behaviour has become increasingly important to the design of microhabitat around substrates for river restoration. To better understand the hydraulics associated with substrate on fish swimming, we studied the effects of a vertical half cylinder (hereafter, cylinder) on the critical swimming speed of juvenile silver carp (Hypophthalmichthys molitrix). Absolute and relative critical swimming speeds of fish in the flow field of the cylinder were significantly increased compared with those swimming in free flow. In addition, the amplitude of fish head and tail oscillations were significantly greater in flows created by the half cylinder. This study highlights the importance of roughness elements in stream microhabitat restoration and, possibly, for fishway design.  相似文献   

19.
Habitat modelling results are extremely sensitive to the habitat suitability criteria (HSC) used in the simulations. HSCs are usually expressed as univariate habitat suitability curves, although such univariate approach has been long questioned, since overlooking interactions between hydraulic variables may misrepresent the complexity of fish behaviour in habitat selection. It could lead to adopt erroneous flow management decisions based on misleading results. Furthermore, the interactive effects of hydraulic variables on habitat selection may be driven by the structural features of the channel, which determine cover availability. Therefore, we compared brown trout habitat selection patterns through multivariate resource selection functions (RSFs) in structurally contrasting rivers to unveil the interactive effects of hydraulics and cover elements and their consequences in univariate HSC results. Microhabitat preferences of young‐of‐the‐year (0+) trout were similar across fast and slow waters, meanwhile juvenile (1+) and adult (>1+) preferences significantly changed. RSFs for young‐of‐the‐year trout were consistent with univariate results and did not differ among water types. However, RSFs for older trout varied among water types and revealed complex interactions among hydraulic variables and between hydraulics and structural elements, which were not described accurately by univariate curves. Therefore, results suggest that interactions between water depth and current velocity have a significant effect on habitat selection patterns in juvenile and adult brown trout, this effect being controlled by cover availability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
As more hydroelectric dams regulate rivers to meet growing energy demands, there is ongoing concern about downstream effects, including impacts on downstream benthic macroinvertebrate (BMI) communities. Hydropeaking is a common hydroelectric practice where short‐term variation in power production leads to large and often rapid fluctuations in discharge and water level. There are key knowledge gaps on the ecosystem impacts of hydropeaking in large rivers, the seasonality of these impacts, and whether dams can be managed to lessen impacts. We assessed how patterns of hydropeaking affect abundance, taxonomic richness, and relative tolerance of BMIs in the Saskatchewan River (Saskatchewan, Canada). Reaches immediately (<2 km) downstream of the dam generally had high densities of BMIs and comparable taxonomic diversity relative to upstream locations but were characterized by lower ratios of sensitive (e.g., Ephemeroptera, Plecoptera, and Trichoptera) to tolerant (e.g., Chironomidae) taxa. The magnitude of effect varied with seasonal changes in discharge. Understanding the effects of river regulation on BMI biodiversity and river health has implications for mitigating the impacts of hydropeaking dams on downstream ecosystems. Although we demonstrated that a hydropeaking dam may contribute to a significantly different downstream BMI assemblage, we emphasize that seasonality is a key consideration. The greatest differences between upstream and downstream locations occurred in spring, suggesting standard methods of late summer and fall sampling may underestimate ecosystem‐scale impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号