首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the effects of nano-silica on flowability, strength development, sorptivity and acid resistance properties of fly ash geopolymer mortars cured at 20 °C. The changes in mass, compressive strength and microstructure of the specimens after immersion in acid solutions for different durations were determined. The microstructures were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. It was found that addition of nano-silica in geopolymer mortars based on fly ash alone or fly ash blended with 15% GGBFS or 10% OPC improved the compactness of microstructure by reducing porosity. Thus, the nano-silica reduced sorptivity and increased compressive strength of the mixes. The average mass loss after 90 days of immersion in acid solutions reduced from 6.0% to 1.9% by addition of 2% nano-silica. Similarly, significant reduction in strength loss after immersion in acid solution was observed in the specimens by using nano-silica.  相似文献   

2.
This paper studies the physical properties, compressive strength and drying shrinkage of multi-blended cement under different curing methods. Fly ash, ground bottom ash and undensified silica fume were used to replace part of cement up to 50% by weight. Specimens were cured in air at ambient temperature, water at 25, 40 and 60 °C, sealed with plastic sheeting for 28 days. The results show that absorption and volume of permeable pore space (voids) of blended cement mortars at 28 day under all curing methods tend to increase with increasing silica fume replacement. The compressive strength of blended cement with fly ash and bottom ash was lower than that of Portland cement control at all curing condition while blended cement with silica fume shows higher compressive strength. In addition, the compressive strength of specimens cured with water increased with increasing curing temperature. The drying shrinkage of all blended cement mortar cured in air was lower than that of Portland cement control while the drying shrinkage of blended cement mortar containing silica fume, cured with plastic sealed and water at 25 °C was higher than Portland cement control due to pore refinement and high autogenous shrinkage. However, the drying shrinkage of blended cement mortar containing SF cured with water at 60 °C was lower than that of Portland cement control due to lower autogenous shrinkage and the reduced microporosity of C–S–H.  相似文献   

3.
Fly ash geopolymer requires rather long heat curing to obtain reasonable strength development at an early age. However, the long heat curing period limits the application of the fly ash geopolymer. High strength development and a reduction in heat curing duration have been considered for energy saving. Therefore, this research proposed a process using 90-W microwave radiation for 5 min followed by conventional heat curing for high-calcium fly ash geopolymer. Results showed that the compressive strengths of geopolymer with microwave radiation followed by conventional heat curing were comparable to those of the control cured at 65 °C for 24 h. Microwave radiation gave the enhanced densification. In addition, SEM images showed that the gels formed on the fly ash particles owing to the promoted dissolution of amorphous phases from fly ash. This method accelerated the geopolymerization and gave the high compressive strength comparable to the conventional curing.  相似文献   

4.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

5.
This paper presents an investigation of the compressive strength and the durability of lignite bottom ash geopolymer mortars in 3% sulfuric acid and 5% sodium sulfate solutions. Three finenesses of ground bottom ash viz., fine, medium and coarse bottom ash were used to make geopolymer mortars. Sodium silicate, sodium hydroxide and curing temperature of 75 °C for 48 h were used to activate the geopolymerization. The results were compared to those of Portland cement and high volume fly ash mortars. It was found that the fine bottom ash was more reactive and gave geopolymer mortars with higher compressive strengths than those of the coarser fly ashes. All bottom ash geopolymer mortars were less susceptible to the attack by sodium sulfate and sulfuric acid solutions than the traditional Portland cement mortars.  相似文献   

6.
《Advanced Powder Technology》2014,25(3):1087-1093
Fluidized bed combustion (FBC) is an environmentally friendly process for burning of coal and is used in many small factories located in urban area. The FBC fly ash is an environmental problem and needs good disposal or utilization. This research studied the strength and resistance to sulfate and acid of alkali-activated FBC fly ash–silica fume composite. The FBC fly ash was interground with silica fume (at the dosage levels of 1.5%, 3.75% and 5.0%) to make the source material homogenous with increased reactivity. Addition of silica fume enabled the adjustment of SiO2/Al2O3 ratios (6.55-7.54) of composite and improved the strength and resistance to sulfate and acid of composite. The composite with 3.75% silica fume showed the optimum strength with 28-day compressive strength of 17.0 MPa. The compressive strengths of composite with 3.75% silica fume immersed in 5% magnesium sulfate solution and 3% sulfuric acid solutions were substantially higher than the control. The strength loss was from the high calcium content of FBC fly ash and incorporation of silica fume thus increased the durability of the composite.  相似文献   

7.
Most previous works on fly ash based geopolymer concrete focused on concretes subjected to heat curing. Development of geopolymer concrete that can set and harden at normal temperature will widen its application beyond precast concrete. This paper has focused on a study of fly ash based geopolymer concrete suitable for ambient curing condition. A small proportion of ordinary Portland cement (OPC) was added with low calcium fly ash to accelerate the curing of geopolymer concrete instead of using elevated heat. Samples were cured in room environment (about 23 °C and RH 65 ± 10%) until tested. Inclusion of OPC as little as 5% of total binder reduced the setting time to acceptable ranges and caused slight decrease of workability. The early-age compressive strength improved significantly with higher strength at the age of 28 days. Geopolymer microstructure showed considerable portion of calcium-rich aluminosilicate gel resulting from the addition of OPC.  相似文献   

8.
This research proposed an alternative utilization of high-calcium fly ash to produce geopolymer bricks for fire-resistant applications. Outdoor heat exposure (OHE) was applied to cure geopolymer mortar. The temperature was up to 40 °C. Geopolymer brick was created with a 30-day compressive strength of 47 MPa via OHE curing for 3 days. The brick experienced a low weight loss after the firing test, which indicated its fire-resistant property. For the flame test, the maximum temperature on the opposite side of the brick from the flame was lower than 380 °C, with no observable cracks, complying with the fire-test requirement. Therefore, high-calcium fly ash geopolymer cured with OHE is suitable for use as a fire-resistant material. In addition, outdoor heat exposure is a promising renewable means to cure geopolymer.  相似文献   

9.
Developments in geopolymer construction are gaining more interest nowadays due to the elimination of cement and the consequent effects such as carbon dioxide emission, greenhouse effect, etc. Although the use of fly ash as a binder in the geopolymer system acts as a key solution for the major hazardous effects like land dumping, soil contamination, groundwater pollution, and respiratory diseases, the slow reactivity of the fly ash resulted in the considerable reduction in the strength. In this paper, a novel pretreatment method was employed on the fly ash binder in terms of thermal and mechanical means. Also, a cost-effective nano fly ash powder was synthesized and used as filler material on the geopolymer system. The efficiency of the fabricated geopolymer mortar was assessed by examining the workability, compressive strength, and resistance against chloride ion penetration. The geopolymer mortars with pre-treated fly ash exhibited a highly workable mix of 130% improved flow rate without adding any superplasticizer. Further, the addition of 1% nano fly ash, exhibited the highest compressive strength of 71.22 MPa, confirmed almost nil chloride ion permeability, and sustained 90% residual strength after immersing in the brine solution for 60 days which explored the development of sustainable and cost-effective geopolymer construction in the marine environment.  相似文献   

10.
An experimental investigation was conducted to evaluate the performance of metakaolin (MK) concrete at elevated temperatures up to 800 °C. Eight normal and high strength concrete (HSC) mixes incorporating 0%, 5%, 10% and 20% MK were prepared. The residual compressive strength, chloride-ion penetration, porosity and average pore sizes were measured and compared with silica fume (SF), fly ash (FA) and pure ordinary Portland cement (OPC) concretes. It was found that after an increase in compressive strength at 200 °C, the MK concrete suffered a more severe loss of compressive strength and permeability-related durability than the corresponding SF, FA and OPC concretes at higher temperatures. Explosive spalling was observed in both normal and high strength MK concretes and the frequency increased with higher MK contents.  相似文献   

11.
In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 ± 5%–135 ± 5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10–65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67–1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75 °C with the curing duration of not less than two days.  相似文献   

12.
In this paper, 90-W microwave radiation for 5 min plus a shortened heat curing period was applied to cure the fresh geopolymer paste. Results showed that microwave radiation contributed to the dissolution of fly ash in the alkaline solution. Numerous gel formations were observed in microscopic scale. This resulted in a dense composite and strong bonding between the fly ash and the geopolymer matrix leading to high strength gain compared to those of the control pastes cured at 65 °C for 24 h. In addition, resistances to the sulfuric acid and sulfate attacks of the microwave geopolymer were superior to that of the control as indicated by the relatively low strength loss. The microwave radiation also helped the geopolymer attaining thermal stability as the dense matrices were obtained.  相似文献   

13.
Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates.  相似文献   

14.
The effects of sodium hydroxide (NaOH) concentration on setting time, compressive strength and electrical properties at the frequencies of 100 Hz–10 MHz of high calcium fly ash geopolymer pastes were investigated. Five NaOH concentrations (8, 10, 12, 15 and 18 molar) were studied. The liquid to ash ratio of 0.4, sodium silicate to sodium hydroxide ratio of 0.67 and low temperature curing at 40 °C were selected in making geopolymer pastes. The results showed that NaOH concentration had significant influence on the physical and electrical properties of geopolymer paste. The pastes with high NaOH concentrations showed increased setting time and compressive strength due to a high degree of geopolymerization as a result of the increased leaching of silica and alumina from fly ash. The dielectric constant and conductivity increased with NaOH concentration while tan δ decreased due to an increase in geopolymerization. At the frequency of 103 Hz, the dielectric constants of all pastes were approximately 104 S/cm and decreased with increased frequency. The relaxation peaks of tan δ reduced with an increase in NaOH concentration and ranged between 2.5 and 4.5. The AC conductivity behavior followed the universal power law and the values were in the range of 3.7 × 103–1.5 × 102 at 105–106 Hz.  相似文献   

15.
Geopolymer concrete (GPC) is an emerging construction material that uses a by-product material such as fly ash as a complete substitute for cement. This paper evaluates the bond strength of fly ash based geopolymer concrete with reinforcing steel. Pull-out test in accordance with the ASTM A944 Standard was carried out on 24 geopolymer concrete and 24 ordinary Portland cement (OPC) concrete beam-end specimens, and the bond strengths of the two types of concrete were compared. The compressive strength of geopolymer concrete varied from 25 to 39 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 20 mm and 24 mm diameter 500 MPa steel deformed bars. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. Failure occurred with the splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This is because of the higher splitting tensile strength of geopolymer concrete than of OPC concrete of the same compressive strength. A comparison between the splitting tensile strengths of OPC and geopolymer concrete of compressive strengths ranging from 25 to 89 MPa shows that geopolymer concrete has higher splitting tensile strength than OPC concrete. This suggests that the existing analytical expressions for bond strength of OPC concrete can be conservatively used for calculation of bond strength of geopolymer concrete with reinforcing steel.  相似文献   

16.
李三  彭小芹  苟菁  周淦  黄婷  陈洋  王淑萍 《材料导报》2018,32(10):1711-1715
以碱激发偏高岭土制备地聚合物混凝土,分别研究了掺入15%的钢渣、矿渣或粉煤灰的地聚合物混凝土的力学抗压强度和抗冻性能,测试了地聚合物混凝土的真空饱水体积吸液率,运用XRD、SEM和DSC-TG等测试方法分析了矿物掺合料对地聚合物微观结构和水化产物的影响。结果表明:钢渣或矿渣能有效提高地聚合物混凝土的抗压强度,而粉煤灰的掺入使其强度稍有降低;地聚合物表观形貌中存在较多的孔洞和微裂缝导致其抗冻性能较差,掺入钢渣或者矿渣后地聚合物形成了新的产物C-S-H凝胶、C-A-S-H凝胶等并填充在结构中形成更加密实的板状结构,降低了地聚合物混凝土冻融破坏速率,五次冻融循环后地聚合物的相对强度均在90%以上,抗冻性能得到提高;粉煤灰降低了制备地聚合物混凝土的用水量且未水化的粉煤灰颗粒镶嵌在结构中增加了其密实性和抗冻性能,五次冻融循环后相对强度为86.9%,基准组的相对强度仅为79.7%。  相似文献   

17.
This paper reports the results of the compressive strength and microstructure of various alkali-activated binders at elevated temperatures of 300 and 600 °C. The binders were prepared by alkali-activated low calcium fly ash/ground granulated blast-furnace slag at ratios of 100/0, 50/50, 10/90 and 0/100 wt.%. Specimens free of loading were heated to a pre-fixed temperature by keeping the furnace temperature constant until the specimens reached a steady state. Then the specimen was loaded to failure while hot. XRD, SEM and FTIR techniques were used to investigate the microstructural changes after the thermal exposure. The fly ash-based specimen shows an increase in strength at 600 °C. On the other hand, the slag-based specimen gives the worst high-temperature performance particularly at a temperature of 300 °C as compared to ordinary Portland cement binder. This contrasting behaviour of binders is due to their different binder formulation which gives rise to various phase transformations at elevated temperatures. The effects of these transformations on the compressive strength are discussed on the basis of experimental results.  相似文献   

18.
When fly ash-based geopolymer mortars were exposed to a temperature of 800 °C, it was found that the strength after the exposure sometimes decreased, but at other times increased. This paper shows that ductility of the mortars has a major correlation to this strength gain/loss behaviour. Specimens prepared with two different fly ashes, with strengths ranging from 5 to 60 MPa, were investigated. Results indicate that the strength losses decrease with increasing ductility, with even strength gains at high levels of ductility. This correlation is attributed to the fact that mortars with high ductility have high capacity to accommodate thermal incompatibilities. It is believed that the two opposing processes occur in mortars: (1) further geopolymerisation and/or sintering at elevated temperatures leading to strength gain; (2) the damage to the mortar because of thermal incompatibility arising from non-uniform temperature distribution. The strength gain or loss occurs depending on the dominant process.  相似文献   

19.
The research described in this paper represents a statistically based model with the help of response surface methodology (RSM) aiming to study the applicability of this method to ultra-high performance concrete (UHPC) mixture design and its optimization. Besides, the effects of silica fume, ultra-fine fly ash (UFFA) and sand as three main variable constituents of UHPC on workability and compressive strength as the main performance criteria and responses of this high-tech material were investigated. The models proposed here demonstrate a perfect correlation among variables and responses. Furthermore, through performing a multi-objective optimization, cement and silica fume, as two main constituents of UHPC affecting its eco-efficiency and cost, were substituted by UFFA and sand as much as possible. Finally, an eco-efficient UHPC with cement and silica fume content of 640 kg/m3 and 56.3 kg/m3 respectively and compressive strength and flow diameter of 160.3 MPa and 19 cm was developed.  相似文献   

20.
This article presents the effect of adding nano-SiO2 and nano-Al2O3 on the properties of high calcium fly ash geopolymer pastes. Nano-particles were added to fly ash at the dosages of 0%, 1%, 2%, and 3% by weight. The sodium hydroxide concentration of 10 molars, sodium silicate to sodium hydroxide weight ratio of 2.0, the alkaline liquid/binder ratio of 0.60 and curing at ambient temperature of 23 °C were used in all mixtures. The results showed that the use of nano-SiO2 as additive to fly ash results in the decrease of the setting time, while the addition of nano-Al2O3 results in only a slight reduction in setting time. Adding 1–2% nano-particles could improve compressive strength, flexural strength, and elastic modulus of pastes due to the formation of additional calcium silicate hydrate (CSH) or calcium aluminosilicate hydrate (CASH) and sodium aluminosilicate hydrate (NASH) or geopolymer gel in geopolymer matrix. In addition, the additions of both nano-SiO2 and nano-Al2O3 enhances the shear bond strength between concrete substrate and geopolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号