首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (33) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (Pmax), maximum heat release rate (HRRmax), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, Pmax, HRRmax and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, Pmax, HRRmax and NO emission at this injection timing, load and speed were 5.3%, 1.8%, 26% and 20% respectively. The best injection timing for Jatropha biodiesel operation with minimum BSFC, CO, HC and smoke and with maximum BTE, Pmax, HRRmax is found to be 340 CAD. Nevertheless, minimum NO emission yielded an optimum injection timing of 350 CAD.  相似文献   

2.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of the present study is to evaluate the performance, combustion, and emission characteristics of a compression-ignition engine using hydrogen-compressed natural gas (HCNG)-enriched Kusum seed biodiesel blend (KSOBD20). The flow rate of HCNG was set at 5, 10, and 15 liters per minute (lpm), and the injection pressure was varied in the range of 180–240 bar. Brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were improved when HCNG was added to the KSOBD20. Combustion characteristics, namely, cylinder pressure (CP) and net heat release rate (NHRR), were also improved. Emissions of carbon monoxide (CO), hydrocarbons (HC), and smoke were also reduced, with the exception of nitrogen oxides (NOx). The higher injection pressure (240 bar) had a positive effect on operating characteristics. At an injection pressure of 240 bar, for KSOB20 + 15 lpm HCNG, the highest BTE and the lowest BSFC were found to be 32.09% and 0.227 kg/kWh, respectively. Also, the CP and NHRR were 69.34 bar and 66.04 J/deg. CO, HC, and smoke levels were finally reduced to 0.013%, 47 ppm, and 9%, respectively, with increased NOx levels of 1623 ppm. For optimum results in terms of engine characteristics, the fuel combination KSOBD20 + 15 lpm HCNG at fuel injection pressure 240 bar is recommended. Thus, HCNG-enriched KSOBD20 can be used as an alternative fuel in diesel engines without requiring any modifications to increase performance and reduce emissions.  相似文献   

4.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

5.
This study is aimed at investigating the effect of injection system parameters such as injection pressure, injection timing and nozzle tip protrusion on the performance and emission characteristics of a twin cylinder water cooled naturally aspirated CIDI engine. Biodiesel, derived from pongamia seeds through transesterification process, blended with diesel was used as fuel in this work. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on response surface methodology (RSM). The resultant models of the response surface methodology were helpful to predict the response parameters such as Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Carbon monoxide (CO), Hydrocarbon (HC), smoke opacity and Nitrogen Oxides (NOx) and further to identify the significant interactions between the input factors on the responses. The results depicted that the BSEC, CO, HC and smoke opacity were lesser, and BTE and NOx were higher at 2.5 mm nozzle tip protrusion, 225 bar of injection pressure and at 30° BTDC of injection timing. Optimization of injection system parameters was performed using the desirability approach of the response surface methodology for better performance and lower NOx emission. An injection pressure of 225 bar, injection timing of 21° BTDC and 2.5 mm nozzle tip protrusion were found to be optimal values for the pongamia biodiesel blended diesel fuel operation in the test engine of 7.5 kW at 1500 rpm.  相似文献   

6.
This paper deals with production of pyrolytic oil from neem seed and using this pyrolytic oil in the form of blend with fossil diesel to study the performance and emission characteristics in CI engine. Thermal and catalytic pyrolysis of non edible neem seed was performed in a slow fixed bed pyrolyser to produce pyrolytic oil. Maximum pyrolytic oil obtained in thermal pyrolysis was 55% wt and in catalytic pyrolysis was 60% wt using both Al2O3 and K2CO3 catalysts followed by 41% wt and 38% wt for zeolite and kaolin catalysts respectively. The catalytic pyrolysis improved pH and calorific values of 12.4% and 14.4% respectively as compared to thermal pyrolysis. Blends of neem seed catalytic pyrolytic oil (NB) with fossil diesel in the ratio of 5% (NB5) and 10% (NB10) by volume were tested on an unmodified CI engine. Brake thermal efficiency (BTE) was lower at part load conditions and higher at full load condition up to 3.7% in the case of blends as compared to fossil diesel operation. Higher Brake Specific Fuel Consumption (BSFC) was observed in the case of NB5 blend on all load conditions, up to 23.9%. Reduction in emission levels were observed for HC (46.9%), CO (42.2%), CO2 (29.8%) and NOx (20.7%) at full load condition. This study observed that neem seed catalytic pyrolytic oil is a potential renewable and sustainable green fuel.  相似文献   

7.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

8.
Hydrogen peroxide (H2O2) is an excellent oxidant carrier that finds its use in combustion and fuel applications. In the present study, H2O2 (30% assay) is used as an emulsifier in waste cooking oil biodiesel blend (B20) and the emissions and performance in a compression ignition engine are assessed. Along with the neat B20, three blends of B20 with 0.5%, 1%, and 1.5% H2O2 concentrations are used. Increasing the concentration of H2O2 beyond 1.5% resulted in vapor lock in the fuel pump leading to a loss in injection pressure. An increase in the exhaust gas temperature was recorded with the increase in H2O2 concentration due to improved fuel properties, like, cetane number, thermal conductivity, and microexplosions of fuel droplets. However, NOx emissions decreased mainly due to the presence of the hydroperoxyl group from H2O2. Analysis of variance was also carried out to assess the statistical significance of H2O2 on the responses and is seen that the maximum impact of H2O2 was positively influencing brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), hydrocarbon (HC), and NOx. Compared with the B20 blend, H2O2 emulsified fuel with a concentration of 1.5% showed a substantial reduction of 53.7%, 28.6%, 14.2%, and 16.2% in the average emissions of CO, HC, smoke, and NOx, respectively. Similarly, 7.9% and 7.1% improvement in the BTE and BSFC is obtained. However, more studies are required to ascertain the NOx reduction mechanism and address issues of fuel vaporization at higher concentrations of H2O2.  相似文献   

9.
Transport vehicles greatly pollute the environment through emissions such as CO, CO2, NOx, SOx, unburnt or partially burnt HC and particulate emissions. Fossil fuels are the chief contributors to urban air pollution and major source of green house gases (GHGs) and considered to be the prime cause behind the global climate change. Biofuels are renewable, can supplement fossil fuels, reduce GHGs and mitigate their adverse effects on the climate resulting from global warming. This paper presents the results of performance and emission analyses carried out in an unmodified diesel engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Engine tests have been conducted to get the comparative measures of brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC) and emissions such as CO, CO2, HC, NOx to evaluate the behaviour of PPME and diesel in varying proportions. The results reveal that blends of PPME with diesel up to 40% by volume (B40) provide better engine performance (BSFC and BSEC) and improved emission characteristics.  相似文献   

10.
Efficient utilization of hydrogen generated during the reactions of nano-silicon/water and nano-aluminum/water in internal combustion engine has been investigated in the current work. Engine performance and emission studies of formulated and stabilized nanoemulsion fuels (water in diesel W/D), nano-aluminum in water/diesel (W/DA) and water in nano-silicon/diesel (W/DS) have been compared with those of diesel. Experimental investigations showed reduction in brake specific fuel consumption (BSFC) by 21% and 37%; rise in brake thermal efficiency (BTE) by 16% and 14% when engine was fueled with W/DA and W/DS respectively. For nanoemulsion fuels an increase in induced power was also recorded. Brake mean effective pressure, BTE and NOx emission dropped for W/D due to reduced exhaust gas temperatures. Nevertheless due to elevated peak cylinder pressures and exhaust gas temperatures a marginal rise in NOx, CO, HC and radiative heat emissions was observed with W/DA and W/DS.  相似文献   

11.
Though the biodiesel is environmental friendly than the conventional petroleum diesel in the aspects of better combustion quality due to higher cetane number (up to 65), reduced emission, and reduced air pollution, running the common rail direct injection (CRDI) engine with 100% biodiesel is not viable due to NOx and CO emissions. The present experimental investigation revealed that the above difficulty can be controlled by running CRDI engine with air nanobubble (ANBs)-enabled biodiesel. The results indicated that there was a reduction of 25% in brake-specific fuel consumption, 33% in NOx, and 16% in CO due to the addition of ANBs with mustard oil biodiesel.  相似文献   

12.
Dual-fuelling in compression–ignition (CI) engines is a mode of combustion where a small pilot injection of high-cetane fuel (i.e. diesel) ignites a premixed high-octane fuel (i.e. methane) and air mixture. This allows conventional CI engines to lower their emissions of smoke and nitrogen oxides (NOx)(NOx) while maintaining their high thermal efficiencies. However, poor ignitability of the main fuel–air charge results in increased emissions of unburnt hydrocarbons (HC) and carbon monoxide (CO). Conventional pilot fuels such as diesel and biodiesel (methyl esters transesterified from raw plant oil) have been researched extensively in prior work, showing that in terms of performance and emissions they perform fairly similarly. This is because the physical, chemical and combustion properties of various methyl esters are comparable to those of conventional diesel. In order to reduce these emissions of HC and CO, alternative pilot fuels need to be considered. As fuels employed during normal CI engine operation, both dimethyl ether (DME, a gaseous CI engine fuel) and water-in-fuel emulsions (conventional biodiesel mixed with varying concentrations of water) have shown that they reduce smoke and NOxNOx emissions significantly, while improving combustion quality. In this work, the performance of DME and water-in-biodiesel emulsions as pilot fuels was assessed. It was seen that the water-in-biodiesel emulsions did not perform as well as expected, as increased HC and CO emissions coupled with a mild change in NOxNOx levels was encountered (compared to conventional pilot fuel, in this case neat biodiesel). The emulsions performed very poorly as pilot fuels below a certain BMEP threshold. DME, while producing higher levels of HC and CO than neat biodiesel, managed to reduce NOxNOx significantly compared to neat biodiesel. Emissions of HC and CO, while higher than neat biodiesel, were not as high as levels seen with the emulsions. Thermal efficiency levels were generally maintained with the liquid pilot fuels, with the DME pilot producing comparatively lower levels.  相似文献   

13.
Biogas has been a promising alternative fuel for IC engines. However, its CO2 content reduces calorific value and ignitability. The CO2 fraction of raw biogas can be separated out by various techniques, which are collectively called methane enrichment. The present study explores the effect of methane enrichment on the output parameters of a Homogeneous Charge Compression Ignition (HCCI) engine. A single cylinder CI engine is altered for this purpose. Biogas (CH4 + CO2) is supplied along with air. Diethyl Ether (DEE) is used as the secondary fuel to initiate auto-ignition. The effects of injecting DEE at the inlet port and upstream in the intake manifold are also compared. Performance, emission and combustion characteristics such as brake thermal efficiency, equivalence ratio, HC, CO, CO2, NOx and smoke emissions, start and duration of combustion, in-cylinder pressure and maximum heat release rate are compared for operation with raw biogas (50% methane) and methane enriched biogas (100% methane) for various biogas flow rates and engine torques. Results show that methane enrichment enhances brake thermal efficiency by up to 2% compared to raw biogas. Methane enrichment advances and speeds up combustion. HC, CO and CO2 emissions, maximum cylinder pressure and maximum heat release rate are also improved with methane enrichment. Ultra-low NOx and smoke emissions can be obtained using raw biogas as well as methane enriched biogas. Low biogas flow rates provide better brake thermal efficiency and HC emissions. Manifold injection of DEE enhances brake thermal efficiency by up to 2% compared to port injection by virtue of greater mixture homogeneity.  相似文献   

14.
In this study, a survey of research papers on utilization of natural gas–hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H2 amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using.  相似文献   

15.
In this paper advanced combustion concepts such as HCCI and PCCI were studied in a single-cylinder engine. PCCI was achieved by the combination of part aspiration and part direct injection of DME in the experiments, which was a compromise to obtain HCCI in that only a portion of the fuel was premixed and the portion of combustion was still controlled by the injection timing. Basic investigations toward the PCCI and HCCI combustion in a DME engine were carried out. DICI operation was also conducted to make a comparison. Results showed that as for the PCCI combustion operation, pmax, (dp/)max and heat release rate were between the values of HCCI and DICI operation and they increased with a rise of premixed ratio. The combustion duration for the PCCI combustion was longer than those of HCCI combustion, but was shorter than that of DICI combustion. Furthermore, the combustion duration decreased and the brake thermal efficiency increased with an increase in premixed ratio. CO and HC emissions for the PCCI combustion operation were lower than those of the HCCI engine. In comparison to conventional DICI operation, NOx emissions for the PCCI combustion operation decreased significantly. Experiments also indicated that the fuel injection timing had a great influence on the performance and emissions of a DME engine at a PCCI combustion mode.  相似文献   

16.
In this paper, the performance and emission characteristics of a conventional twin-cylinder, four stroke, spark-ignited (SI) engine that is running with methane–hydrogen blends have been investigated experimentally. The engine was modified to realize hydrogen port injection by installing hydrogen feeding line in the intake manifolds. The experimental results have been demonstrated that the brake specific fuel consumption (BSFC) increased with the increase of hydrogen fraction in fuel blends at low speeds. On the other hand, as hydrogen percentage in the mixture increased, BSFC values decreased at high speeds. Furthermore, brake thermal efficiencies were found to decrease with the increase in percentage of hydrogen added. In addition, it has been found that CO2, NOx and HC emissions decrease with increasing hydrogen. However, CO emissions tended to increase with the addition of hydrogen generally increase. It has been showed that hydrogen is a very good choice as a gasoline engine fuel. The data are also very useful for operational changes needed to optimize the hydrogen fuelled SI engine design.  相似文献   

17.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

18.
A new combustion model diesel/methanol compound combustion (DMCC) is presented, in which methanol is injected into manifold and ignited by certain amount of diesel fuel. The results showed that DMCC remarkably decreased the emission of NOx and the smoke, but increased the emission of HC, CO and PM. However, HC, CO and NOx were dramatically decreased with a catalytic converter, and PM was also decreased compared with that of diesel engine. The testing results illustrated that, combined with oxidation catalyst converter, DMCC could improve engine emissions. __________ Translated from Transactions of CSICE, 2006, 24(5): 402–407 [译自: 内燃机学报]  相似文献   

19.
This study reports the results of an experimental investigation of the performance of an IC engine fueled with a Karanja biodiesel blends, followed by multi-objective optimization with respect to engine emissions and fuel economy, in order to determine the optimum biodiesel blend and injection timings complying with Bharat Stage II emission norms. Nonlinear regression has been used to regress the experimentally obtained data to predict the brake thermal efficiency, NOx, HC and smoke emissions based on injection timing, blend ratio and power output. To acquire the data, experimental studies have been conducted on a single cylinder, constant speed (1500 rpm), direct injection diesel engine under variable load conditions and injection timings for neat diesel and various Karanja biodiesel blends (5%, 10%, 15%, 20%, 50% and 100%). Retarding the injection timing for neat Karanja biodiesel resulted in an improved efficiency and lower HC emissions. A tradeoff relationship between the NOx and smoke emissions is observed, which makes it difficult to determine the optimum blend ratio. The functional relationship developed between the correlating variables using nonlinear regression is able to predict the performance and emission characteristics with a correlation coefficient (R) in the range of 0.95-0.99 and very low root mean square errors. The outputs obtained using these functions are used to evaluate the multi-objective function of optimization process in the 0-20% blend range. The overall optimum is found to be 13% biodiesel-diesel blend with an injection timing of 24°bTDC, when equal weightage is given to emissions and efficiency.  相似文献   

20.
This paper exhibits the emission characteristics of a diesel engine fueled with jojoba oil methyl ester and its blends (10, 20, and 30%) utilizing the groundnut shell producer gas. Emission parameters of jojoba biodiesel were tested in dual-fuel mode at constant gas flow rate of 22.72 kg/h. Various oil characterizations like kinematic viscosity, specific gravity, flash and fire point, oxidation stability, calorific value, cetane number, sulfur content, and so on and emission parameters such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxide (NOx), and smoke emissions are were taken into account. From the experimental values it can be resolved that there is substantial advancement in both oil characterization and emission parameters for minor blends of jojoba oil methyl esters in comparison to those of neat diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号