首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li-ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build-up of dead Li in “hostless” Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li22Si5, Li22(Si0.5Ge0.5)5, and Li22Ge5 formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li22Ge5/Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm−2/1 mAh cm−2 for 1000 h and at 3 mA cm−2/3 mAh cm−2 for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li22Ge5 decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO4, and NMC811 cathodes, the CP-LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.  相似文献   

2.
Understanding zinc (Zn) deposition behavior and improving Zn stripping and plating reversibility are significant in developing practical aqueous Zn ion batteries (AZIBs). Zn metal is abundant, cost-effective, and intrinsically safe compared with Li. However, their similar inhomogeneous growth regime harms their practicality. This work reports a facile, easily scalable, but effective method to develop a textured Zn with unidirectional scratches on the surface that electrochemically achieves a high accumulated areal capacity of 5530 mAh cm−2 with homogenized Zn deposition. In symmetric cells, textured Zn presents a stable cycling performance of 1100 hours (vs 250 h of bare Zn) at 0.5 mA cm−2 for 0.5 mAh cm−2 and lower nucleation and plating overpotentials of 120.5 and 41.8 mV. In situ optical microscopy and COMSOL simulation disclose that the textured surface topography can 1) homogenize the electron field distribution on the Zn surface and regulate Zn nucleation and growth, and 2) provides physical space to accommodate Zn deposits, prevent the detachment of “dead” Zn, and improve the structural sufficiency of Zn anode. Moreover, differential electrochemical mass spectrometry analysis find that the textured Zn with regulated interfacial electron activity also presents a higher resistance toward hydrogen evolution and other parasitic reactions.  相似文献   

3.
Lithium metal batteries are intensively studied due to the potential to bring up breakthroughs in high energy density devices. However, the inevitable growth of dendrites will cause the rapid failure of battery especially under high current density. Herein, the utilization of tetrachloroethylene (C2Cl4) is reported as the electrolyte additive to induce the formation of the LiCl-rich solid electrolyte interphase (SEI). Because of the lower Li ion diffusion barrier of LiCl, such SEI layer can supply sufficient pathway for rapid Li ion transport, alleviate the concentration polarization at the interface and inhibit the growth of Li dendrites. Meanwhile, the C2Cl4 can be continuously replenished during the cycle to ensure the stability of the SEI layer. With the aid of C2Cl4-based electrolyte, the Li metal electrodes can maintain stable for >300 h under high current density of 50 mA cm−2 with areal capacity of 5 mAh cm−2, broadening the compatibility of lithium metal anode toward practical application scenarios.  相似文献   

4.
This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil “Al@Al,” without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.5 mA cm−2, with 98.9% cycling Coulombic efficiency and 0.085 V overpotential. The pre-potassiated cell is stable through a wide current range, including 130 cycles (2600 min) at 3.0 mA cm−2, with 0.178 V overpotential. Al@Al is fully wetted by a 4 m potassium bis(fluorosulfonyl)imide-dimethoxyethane electrolyte (θCA  = 0 ° ), producing a uniform solid electrolyte interphase (SEI) during the initial galvanostatic formation cycles. On planar aluminum foil with a nearly identical surface oxide, the electrolyte wets poorly (θCA  = 52 ° ). This correlates with coarse irregular SEI clumps at formation, 3D potassium islands with further SEI coarsening during plating/stripping, possibly dead potassium metal on stripped surfaces, and rapid failure. The electrochemical stability of Al@Al versus planar Al is not related to differences in potassiophilicity (nearly identical) as obtained from thermal wetting experiments. Planar Cu foils are also poorly electrolyte-wetted and become dendritic. The key fundamental takeaway is that the incomplete electrolyte wetting of collectors results in early onset of SEI instability and dendrites.  相似文献   

5.
Metallic lithium is the most competitive anode material for next-generation lithium (Li)-ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)-enriched solid electrolyte interphase (SEI) through the lithiation of surface-fluorinated mesocarbon microbeads (MCMB-F) anodes. The robust LiF-enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF-enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC-based electrolyte is achieved within 25 cycles. Coupling the pre-lithiated MCMB-F (Li@MCMB-F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB-F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2 for 110 times at a negligible capacity decay of 0.01% per cycle.  相似文献   

6.
The low Coulombic efficiency of the lithium metal anode is recognized as the real bottleneck to practical high-efficiency lithium metal batteries with limited Li excess. The grain size and microstructure of deposited lithium strongly influences the lithium plating/stripping efficiency. Here, a solubilizer-mediated carbonate electrolyte that can realize grain coarsening of lithium deposits (>20 µm in width) with oriented columnar morphology, which is in sharp contrast with conventional nanoscale dendrite-like lithium deposits in carbonate electrolytes, is reported. It exhibits improved Li Coulombic efficiency to 98.14% at a high capacity of 3 mAh cm−2 over 150 cycles, because the colossal lithium deposition with minimal tortuosity can maintain the bulk Li with continuous electron conducting pathway during the stripping process, thus enabling efficient Li utilization. Li/NMC811 full batteries, composed of thin Li anode (45 µm) and a high-capacity NMC811 cathode (16.7 mg cm−2), can achieve at least 12 times longer lifespan (200 cycles).  相似文献   

7.
The practical application of aqueous zinc batteries are highly limited by unsatisfied Zn anodes for the unavoidable dendrite growth and side reactions. Crystal orientation engineering is an effective way to overcome these inherent drawbacks. However, how to achieve Zn plating with manipulated crystallographic orientation is still a great challenge. Herein, a uniform (002)-oriented Zn metal anode is reported based on a directional cation recognition and crystal assembly strategy. The activated layered double hydroxide (Act-LDH) exhibits favorable adsorption energy with Zn2+ and high lattice matching with Zn (002) plane, which can be served as directional recognition layer to anchor Zn2+ and regulate crystallographic orientation of Zn as well. As demonstration, Zn crystals with ultrahigh ratio of (002)/(100) plane of 15.7 are assembled parallelly on horizontal Act-LDH, in which high CE of 99.85% maintains over 18 000 cycles. The symmetric battery with (002)-oriented Zn shows stable plating/stripping process over 1650 and 420 h at 1 mA cm−2/0.5 mA h cm−2 and 10 mA cm−2/5 mA h cm−2, respectively, which is 9 and 12 times higher than unoriented polycrystalline Zn. Moreover, as-assembled full battery displays high specific capacity of 120 mA h g−1 at 2 A g−1 over 1800 cycles.  相似文献   

8.
Rechargeable zinc-ion batteries (RZIBs) have gained promising attention as a feasible alternative for large-scale energy storage by the virtue of their intrinsic security, environmental benignity, low cost, and high volumetric capacity (5849 mAh cm−3). Nevertheless, the deep-rooted issues of dendrite formation and side reactions in unstable Zn metal anode have impeded RZIBs from being dependably deployed in their proposed applications. Herein, silk fibroin (SF) and lysozyme (ly), as natural biomacromolecules with abundant polar groups arranged in polypeptide backbones, are in situ self-assembled on the Zn anode surface to construct a homogeneous and compact protein nanofilm. Such protein nanofilm protecting layer presents a negative charge surface and significantly regulates Zn2+ deposition behavior. Meanwhile, synergistic flexible and robust features of protein nanofilm function as artificial solid electrolyte interface (SEI), accommodates the dynamic volume deformation during deposition/dissolution, and blocks corrosion of side reactions. Consequently, the electrochemical stability of protein nanofilm-modified Zn anode is greatly improved, with an excellent extended lifespan of over 1100 h at a high current density of 10 mA cm−2 and a high cycling capacity of 10 mAh cm−2, corresponding to a high depth of discharge (83% DODZn). Furthermore, the highly reversible Zn electrode remarkably improved the overall performance of MnO2||Zn full-cells.  相似文献   

9.
Sodium metal battery is supposed to be a propitious technology for high-energy storage application owing to the advantages of natural abundance and low cost. Unfortunately, the uncontrollable dendrite growth critically hampers its practical implementation. Herein, an inorganic/organic hybrid layer of NaF/C F/CC on the surface of Na foil (IOHL-Na) is designed and synthesized through the in situ reaction of polyvinylidene fluoride (PVDF) and metallic sodium. This protective layer possesses satisfactory Young's modulus, good kinetic property, and sodiophilicity, which can distinctly stabilize Na metal anode. As a result, the symmetric IOHL-Na cell achieves a lifespan of 770 h at 1 mAh cm−2/1 mA cm−2 in carbonate electrolyte. The assembled full battery of IOHL-Na||Na3V2(PO4)3 delivers a high discharge capacity of 85 mAh g−1 at 10 C after 600 cycles under ambient temperature. Furthermore, the IOHL-Na||Na3V2(PO4)3 cell still can steadily operate at 10 C for 600 cycles at 55 °C. And when testing at an ultralow temperature of −40 °C, the full cell achieves 40 mAh g−1 at 0.5 C with a prolonged lifespan of 450 cycles. This work offers a new approach to protect the metal sodium anode without dendrite growth under wide temperatures.  相似文献   

10.
Assembling quantum dots (QDs) into van der Waals (vdW)-layered superstructure holds great promise for the development of high-energy-density metal anode. However, designing such a superstructure remains to be challenging. Here, a chemical-vapor Oriented Attachment (OA) growth strategy is proposed to achieve the synthesis of vdW-layered carbon/QDs hybrid superlattice nanosheets (Fe7S8@CNS) with a large vdW gap of 3 nm. The Fe7S8@CNS superstructure is assembled by carbon-coated Fe7S8 (Fe7S8@C) QDs as building blocks. Interestingly, the Fe7S8@CNS exhibits two kinds of edge dislocations similar to traditional atom-layered materials, suggesting that Fe7S8@C QDs exhibit quasi-atomic growth behavior during the OA process. More interestingly, when used as host materials for sodium metal anodes, the Fe7S8@CNS shows the interlayer sodium plating/stripping behavior, which well suppresses Na dendrite growth. As a result, the cell with Fe7S8@CNS anode can keep stable cycling for 1000 h with a high Coulombic efficiency (CE) of ≈99.5% at 3.0 mA cm−2 and 3.0 mAh cm−2. Noticeably, the Na@Fe7S8@CNS||Na3V2(PO4)3 full cells can attain a capacity of 88.8 mAh g−1 with a retention of 97% after 1000 cycles at 1.0 A g−1 (≈8 C), showing excellent cycle stability for practical applications. This work enriches the vdW-layered QDs superstructure family and their application toward energy storage.  相似文献   

11.
Li metal anode has been recognized as the most promising anode for its high theoretical capacity and low reduction potential. But its large-scale commercialization is hampered because of the infinite volume expansion, severe side reactions, and uncontrollable dendrite formation. Herein, the self-supporting porous lithium foam anode is obtained by a melt foaming method. The adjustable interpenetrating pore structure and dense Li3N protective layer coating on the inner surface enable the lithium foam anode with great tolerance to electrode volume variation, parasitic reaction, and dendritic growth during cycling. Full cell using high areal capacity (4.0 mAh cm−2) LiNi0.8Co0.1Mn0.1 (NCM811) cathode with the N/P ratio of 2 and E/C ratio of 3 g Ah−1 can stably operate for 200 times with 80% capacity retention. The corresponding pouch cell has <3% pressure fluctuation per cycle and almost zero pressure accumulation.  相似文献   

12.
For its high theoretical capacity and low redox potential, Li metal is considered to be one of the most promising anode materials for next‐generation batteries. However, practical application of a Li‐metal anode is impeded by Li dendrites, which are generated during the cycling of Li plating/stripping, leading to safety issues. Researchers attempt to solve this problem by spatially confining the Li plating. Yet, the effective directing of Li deposition into the confined space is challenging. Here, an interlayer is constructed between a graphitic carbon nitrite layer (g‐C3N4) and carbon cloth (CC), enabling site‐directed dendrite‐free Li plating. The g‐C3N4/CC as an anode scaffold enables extraordinary cycling stability for over 1500 h with a small overpotential of ≈80 mV at 2 mA cm?2. Furthermore, prominent battery performance is also demonstrated in a full cell (Li/g‐C3N4/CC as anode and LiCoO2 as cathode) with high Coulombic efficiency of 99.4% over 300 cycles.  相似文献   

13.
Li metal is the most ideal anode material to assemble rechargeable batteries with high energy density. However, nonuniform Li-ion flux during repeated Li plating and stripping leads to continuous Li dendrite growth and dead Li formation, which causes safety risks and short lifetime and thus impedes the commercialization of Li metal batteries. Here, parallelly aligned holey nanosheets on a Li metal anode are reported to simultaneously redistribute the Li-ion flux in the electrolyte and in the solid-electrolyte interphase, which allows uniform Li-ion distribution as well as fast Li-ion diffusion for reversible Li plating and stripping. With holey MgO nanosheets as an example, the protected Li anodes achieve Coulombic efficiency of ≈99% and ultralong-term reversible Li plating/stripping over 2500 h at a high current density of 10 mA cm−2. A full-cell battery, using the protected anode, a 4 V Li-ion cathode, and a commercial carbonate electrolyte, shows capacity retention of 90.9% after 500 cycles.  相似文献   

14.
Fluorinated solid‐electrolyte interphase (SEI) derived from fluoroethylene carbonate (FEC) is particularly favored for dendrite suppression in lithium metal batteries because of the high Young's modulus (≈64.9 Gpa) and low electronic conductivity (10?31 S cm?1) of LiF. However, the transportation ability of Li+ in this fluorinated SEI under high current densities is limited by the low ionic conductivity of LiF (≈10?12 S cm?1). Herein, by rational design, 0.1 m lithium bisoxalatodifluorophosphate (LiDFBOP) is adopted to modify fluorinated SEI in FEC based electrolyte for fast charging lithium metal batteries. Benefiting from the synergetic effect of LiDFBOP and FEC, a fluorinated SEI rich in LiF and LixPOyFz species can be yielded, which can further improve the stability and ionic conductivity of SEI for fast Li+ transportation. Meanwhile, the average coulombic efficiency for Li plating/stripping is improved from 92.0% to 96.7%, thus promoting stable cycling of Li||Li symmetrical batteries with dendrite free morphologies, even at high current densities (3.0 mA cm?2) and high plating/stripping capacities (3.0 mAh cm?2). More attractively, in practical Li||LiNi0.6Co0.2Mn0.2O2 batteries, the cycling life at 1C and rate capacities at 6C are also significantly improved. Therefore, the synergetic effect of LiDFBOP and FEC provides great potential for achieving advanced lithium metal batteries with fast charging ability.  相似文献   

15.
Implementing the utilization of lithium metal in actual processing and application conditions is essential for next-generation high-energy batteries at a practical level. However, the air/water instability of the high-reactive Li metal remains unsolved. Here, a water-stable Li metal anode with ultrahigh-rate capability enabled by a rationally designed architecture is reported. A hydrophobic graphene framework, consists of an array of vertically aligned sheets and a roof of sloping-aligned sheets, is utilized to fully host lithium metal. As a result, it is first demonstrated that the composite Li metal anode can run stably even after it directly contacts with water. In addition, both the arrays and the roof in the framework are directional graphene microsheets that can provide fast charge transport kinetics in the anode without tortuosity. Therefore, the anode can operate at an extremely high current density of 50 mA cm−2 with long-term cycling stability. Importantly, the composite Li anodes in Li||LiFePO4 and Li||NCM-811 cells also show much improved performances than Li metal foil under crucial conditions of lean electrolyte and low negative/positive capacity ratio. This design provides a significant stride in the safety toward the practicability of low air/water tolerance materials.  相似文献   

16.
Uncontrolled ion transport and susceptible SEI films are the key factors that induce lithium dendrite growth, which hinders the development of lithium metal batteries (LMBs). Herein, a TpPa-2SO3H covalent organic framework (COF) nanosheet adhered cellulose nanofibers (CNF) on the polypropylene separator (COF@PP) is successfully designed as a battery separator to respond to the aforementioned issues. The COF@PP displays dual-functional characteristics with the aligned nanochannels and abundant functional groups of COFs, which can simultaneously modulate ion transport and SEI film components to build robust lithium metal anodes. The Li//COF@PP//Li symmetric cell exhibits stable cycling over 800 h with low ion diffusion activation energy and fast lithium ion transport kinetics, which effectively suppresses the dendrite growth and improves the stability of Li+ plating/stripping. Moreover, The LiFePO4//Li cells with COF@PP separator deliver a high discharge capacity of 109.6 mAh g−1 even at a high current density of 3 C. And it exhibits excellent cycle stability and high capacity retention due to the robust LiF-rich SEI film induced by COFs. This COFs-based dual-functional separator promotes the practical application of lithium metal batteries.  相似文献   

17.
Despite significant efforts to fabricate high energy density (ED) lithium (Li) metal anodes, problems such as dendrite formation and the need for excess Li (leading to low N/P ratios) have hampered Li metal battery (LMB) development. Here, the use of germanium (Ge) nanowires (NWs) directly grown on copper (Cu) substrates (Cu-Ge) to induce lithiophilicity and subsequently guide Li ions for uniform Li metal deposition/stripping during electrochemical cycling is reported. The NW morphology along with the formation of the Li15Ge4 phase promotes uniform Li-ion flux and fast charge kinetic, resulting in the Cu-Ge substrate demonstrating low nucleation overpotentials of 10 mV (four times lower than planar Cu) and high Columbic efficiency (CE) efficiency during Li plating/stripping. Within a full-cell configuration, the Cu-Ge@Li – NMC cell delivered a 63.6% weight reduction at the anode level compared to a standard graphite-based anode, with impressive capacity retention and average CE of over 86.5% and 99.2% respectively. The Cu-Ge anodes are also paired with high specific capacity sulfur (S) cathodes, further demonstrating the benefits of developing surface-modified lithiophilic Cu current collectors, which can easily be integrated at the industrial scale.  相似文献   

18.
Lithium metal is the only anode material that can enable the Li−O2 battery to realize its high theoretical energy density (≈3500 Wh kg−1). However, the inherent uncontrolled dendrite growth and serious corrosion limitations of lithium metal anodes make it experience fast degradation and impede the practical application of Li−O2 batteries. Herein, a multifunctional complementary LiF/F-doped carbon gradient protection layer on a lithium metal anode by one-step in situ reaction of molten Li with poly(tetrafluoroethylene) (PTFE) is developed. The abundant strong polar C-F bonds in the upper carbon can not only act as Li+ capture site to pre-uniform Li+ flux but also regulate the electron configuration of LiF to make Li+ quasi-spontaneously diffuse from carbon to LiF surface, avoiding the strong Li+-adhesion-induced Li aggregation. For LiF, it can behave as fast Li+ conductor and homogenize the nucleation sites on lithium, as well as ensure firm connection with lithium. As a result, this well-designed protection layer endows the Li metal anode with dendrite-free plating/stripping and anticorrosion behavior both in ether-based and carbonate ester-based electrolytes. Even applied protected Li anodes in Li−O2 batteries, its superiority can still be maintained, making the cell achieve stable cycling performance (180 cycles).  相似文献   

19.
Electrolyte engineering is a feasible strategy to realize high energy density lithium metal batteries. However, stabilizing both lithium metal anodes and nickel-rich layered cathodes is extremely challenging. To break through this bottleneck, a dual-additives electrolyte containing fluoroethylene carbonate (10 vol.%) and 1-methoxy-2-propylamine (1 vol.%) in conventional LiPF6-containing carbonate-based electrolyte is reported. The two additives can polymerize and thus generate dense and uniform LiF and Li3N-containing interphases on both electrodes’ surfaces. Such robust ionic conductive interphases not only prevent lithium dendrite formation in lithium metal anode but also suppress stress-corrosion cracking and phase transformation in nickel-rich layered cathode. The advanced electrolyte enables Li||LiNi0.8Co0.1Mn0.1O2 stably cycle for 80 cycles at 60 mA g−1 with a specific discharge capacity retention of 91.2% under harsh conditions.  相似文献   

20.
The α-Ni(OH)2 is regarded as one promising cathode for aqueous nickel-zinc batteries due to its high theoretical capacity of ≈480 mAh g−1, its practical deployment however suffers from the poor stability in strong alkaline solution, intrinsic low electrical conductivity as well as the retarded ionic diffusion. Herein, a 3D (three dimensional) macroporous α-Ni(OH)2 nanosheets with Co doping is designed through a facile and easily scalable electroless plating combined with electrodeposition strategy. The unique micrometer-sized 3D pores come from Ni substrate and rich voids between Co-doping α-Ni(OH)2 nanosheets can synergistically afford facile, interconnected ionic diffusion channels, sufficient free space for accommodating its volume changes during cycling; meanwhile, the Co-doping can stabilize the structural robustness of the α-Ni(OH)2 in the alkaline electrolyte during cycling. Thus, the 3D α-Ni(OH)2 shows a high capacity of 284 mAh g−1 at 0.5 mA cm−2 with an excellent retention of 78% even at 15 mA cm−2, and more than 2000 stable cycles at 6 mA cm−2, as well as the robust cycling upon various flexible batteries. This work provides a simple and efficient pathway to enhance the electrochemical performance of Ni-Zn batteries through improving ionic transport kinetics and stabilizing crystal structure of cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号