首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fabrication of transition-metal catalytic materials is regarded as a promising strategy for developing high-performance sodium–selenium (Na–Se) batteries. However, more systematic explorations are further demanded to find out how their bonding interactions and electronic structures can affect the Na storage process. This study finds that lattice-distorted nickel (Ni) structure can form different bonding structures with Na2Se4, providing high activity to catalyze the electrochemical reactions in Na–Se batteries. Using this Ni structure to prepare electrode (Se@NiSe2/Ni/CTs) can realize rapid charge transfer and high cycle stability of the battery. The electrode exhibits high storage performance of Na+; i.e., 345 mAh g⁻1 at 1 C after 400 cycles, and 286.4 mAh g⁻1 at 10 C in rate performance test. Further results reveal the existence of a regulated electronic structure with upshifts of the d-band center in the distorted Ni structure. This regulation changes the interaction between Ni and Na2Se4 to form a Ni3–Se tetrahedral bonding structure. This bonding structure can provide higher adsorption energy of Ni to Na2Se4 to facilitate the redox reaction of Na2Se4 during the electrochemical process. This study can inspire the design of bonding structure with high performance in conversion-reaction-based batteries.  相似文献   

2.
There is a growing demand for small-caliber tissue-engineered vascular grafts to replace damaged vessels. Fabricated scaffolds are unable to precisely mimic the mechanical properties of native vessels, provide long-term patency and support cell adhesion and growth, in particular support endothelialization. In this study, a new biodegradable poly(ether ester urethane) urea (PEEUU) was synthesized. The synthesized polyurethane was then functionalized by introducing free amino groups through aminolysis for further surface modification by immobilization of biomacromolecules on the surface of vascular grafts. The modified surfaces were then characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, water contact angle measurement and atomic force microscopy. The mechanical properties of the fabricated scaffolds were analyzed, revealing mechanical properties close to that of the natural vessels. Surface modifications led to improved cell–scaffold interactions, showing appropriate cell attachment and function on the scaffolds. A confluent layer of endothelial cells was formed on biomacromolecule-immobilized PEEUU vascular grafts. The preliminary results of this study demonstrated that the new polyurethane modified with biomacromolecules can be considered as a candidate material for vascular tissue engineering application with capability to support endothelialization of fabricated vascular grafts.  相似文献   

3.
Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long‐term stabilization of newly induced vessels remains a challenge. It has been shown that fibroblasts and mesenchymal stem cells can stabilize newly induced vessels. However, whether an injected biomaterial alone can serve as an instructive environment for angiogenesis remains to be elucidated. It is reported here that appropriate vascular branching, and long‐term stabilization can be promoted simply by implanting a hydrogel with stiffness matching that of fibrin clot. A unique subpopulation of circulating CD11b+ myeloid and CD11b+/CD115+ monocytes that express the stretch activated cation channel Piezo‐1, which is enriched prominently in the clot‐like hydrogel, is identified. These findings offer evidence for a mechanobiology paradigm in angiogenesis involving an interplay between mechanosensitive circulating cells and mechanics of tissue microenvironment.  相似文献   

4.
Currently used wound dressings are ineffective. Hence, there is a need to develop introduce a high-performance medicament with multiple functions including rapid hemostasis and excellent antibacterial activity to meet the growing worldwide demand for wound healing products. Here, inspired by the strong adhesion of mussels and the enzyme-mimicking activity of nanometallic biomaterials, the authors developed an injectable hydrogel to overcome multiple limitations of current wound dressings. The hydrogel is synthesized via esterification reaction between poly(vinyl alcohol) (PVA) and 3,4-dihydroxyphenylalanine (DOPA), followed by catechol-metal coordination between Cu2+ and the catechol groups of DOPA to form a PVA-DOPA-Cu (PDPC) hydrogel. The PDPC hydrogel possesses excellent tissue adhesive, antioxidative, photothermal, antibacterial, and hemostatic properties. The hydrogel rapidly and efficiently stopped bleeding under different traumatic conditions, including otherwise-lethal liver injury, high-pressure carotid artery rupture, and even fatal cardiac penetration injuries in animal models. Furthermore, it is demonstrated that the PDPC hydrogel affected high-performance wound repair and tissue regeneration by accelerating re-epithelialization, promoting collagen deposition, regulating inflammation, and contributing to vascularization. The results show that PDPC hydrogel is a promising candidate for rapid hemorrhage control and efficient wound healing in multiple clinical applications.  相似文献   

5.
Novel electrospun polyurethane/gelatin composite meshes for vascular grafts   总被引:1,自引:0,他引:1  
Novel polymeric micro-nanostructure meshes as blood vessels substitute have been developed and investigated as a potential solution to the lack of functional synthetic small diameter vascular prosthesis. A commercial elastomeric polyurethane (Tecoflex® EG-80A) and a natural biopolymer (gelatin) were successfully co-electrospun from different spinnerets on a rotating mandrel to obtain composite meshes benefiting from the mechanical characteristics of the polyurethane and the natural biopolymer cytocompatibility. Morphological analysis showed a uniform integration of micrometric (Tecoflex®) and nanometric (gelatin) fibers. Exposure of the composite meshes to vapors of aqueous glutaraldehyde solution was carried out, to stabilize the gelatin fibers in an aqueous environment. Uniaxial tensile testing in wet conditions demonstrated that the analyzed Tecoflex®–Gelatin specimens possessed higher extensibility and lower elastic modulus than conventional synthetic grafts, providing a closer matching to native vessels. Biological evaluation highlighted that, as compared with meshes spun from Tecoflex® alone, the electrospun composite constructs enhanced endothelial cells adhesion and proliferation, both in terms of cell number and morphology. Results suggest that composite Tecoflex®–Gelatin meshes could be promising alternatives to conventional vascular grafts, deserving of further studies on both their mechanical behaviour and smooth muscle cell compatibility.  相似文献   

6.
The data on function and patency of prosthetic vascular grafts in various clinical settings are limited. The purpose of this in vivo study was to compare the function and patency of P15‐coated expanded polytetrafluoroethylene (ePTFE) vascular grafts to uncoated ePTFE grafts in sheep. The P15 cell‐binding peptide was covalently immobilized onto the surface of ePTFE grafts by a novel atmospheric plasma coating method. We evaluated the amount of neointimal tissue ingrowth present at the arterial and venous sides of the anastomoses and the degree of endothelial cell resurfacing of the luminal surface of the graft. Four P15‐coated grafts and two control grafts were implanted as arteriovenous grafts between the femoral artery and vein and the carotid artery and jugular vein in two sheep (n = 6). One animal was euthanized after 14 days and the other after 28 days. The study showed the intimal ingrowth was significantly less. The average intimal thickness of P15‐coated grafts (658 µm) was approximately two and a half times less than that of uncoated samples (1657 µm). The newly formed endothelial cell lining was thicker and its coverage was more uniform for P15‐coated grafts compared to the uncoated controls.  相似文献   

7.
Conductive polymer hydrogels (CPHs) are widely employed in emerging flexible electronic devices because they possess both the electrical conductivity of conductors and the mechanical properties of hydrogels. However, the poor compatibility between conductive polymers and the hydrogel matrix, as well as the swelling behavior in humid environments, greatly compromises the mechanical and electrical properties of CPHs, limiting their applications in wearable electronic devices. Herein, a supramolecular strategy to develop a strong and tough CPH with excellent anti-swelling properties by incorporating hydrogen, coordination bonds, and cation-π interactions between a rigid conducting polymer and a soft hydrogel matrix is reported. Benefiting from the effective interactions between the polymer networks, the obtained supramolecular hydrogel has homogeneous structural integrity, exhibiting remarkable tensile strength (1.63 MPa), superior elongation at break (453%), and remarkable toughness (5.5 MJ m−3). As a strain sensor, the hydrogel possesses high electrical conductivity (2.16 S m−1), a wide strain linear detection range (0–400%), and excellent sensitivity (gauge factor = 4.1), sufficient to monitor human activities with different strain windows. Furthermore, this hydrogel with high swelling resistance has been successfully applied to underwater sensors for monitoring frog swimming and underwater communication. These results reveal new possibilities for amphibious applications of wearable sensors.  相似文献   

8.
This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310–330 mmol kg−1. These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body’s temperature that turns liquid at room temperature.  相似文献   

9.
In this work, high-performance, light-stimulation healable, and closed-loop recyclable covalent adaptable networks are successfully synthesized from natural lignin-based polyurethane (LPU) Zn2+ coordination structures (LPUxZy). Using an optimized LPU (LPU-20 with a tensile strength of 28.4 ± 3.5 MPa) as the matrix for Zn2+ coordination, LPUs with covalent adaptable coordination networks are obtained that have different amounts of Zn. When the feed amount of ZnCl2 is 9 wt%, the strength of LPU-20Z9 reaches 37.3 ± 3.1 MPa with a toughness of 175.4 ± 4.6 MJ m−3, which is 1.7 times of that of LPU-20. In addition, Zn2+ has a crucial catalytic effect on “dissociation mechanism” in the exchange reaction of LPU. Moreover, the Zn2+-based coordination bonds significantly enhance the photothermal conversion capability of lignin. The maximum surface temperature of LPU-20Z9 reaches 118 °C under the near-infrared illumination of 0.8 W m−2. This allows the LPU-20Z9 to self-heal within 10 min. Due to the catalytic effect of Zn2+, LPU-20Z9 can be degraded and recovered in ethanol completely. Through the investigation of the mechanisms for exchange reaction and the design of the closed-loop recycling method, this work is expected to provide insight into the development of novel LPUs with high-performance, light-stimulated heal ability, and closed-loop recyclability; which can be applied toward the expanded development of intelligent elastomers.  相似文献   

10.
A novel thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel containing glycyrrhetinic acid(GA) was synthesized by free radical copolymerization. The structure of the product was confirmed by FT-IR and 1H-NMR spectra. The temperature responsibility and swelling properties of the copolymerized hydrogel were investigated by differential scanning calorimetry (DSC) and gravimetric methods. The results indicated that GA-incorporated hydrogel was still temperature responsive and the swelling ratio decreased with the increasing of temperature. The lower critical solution temperature (LCST) of GA-incorporated hydrogel and poly(N-isopropylacrylamide) hydrogel was 30.00 °C and 31.21 °C, respectively, in distilled water. However, these two values were shifted to 28.22 °C and 29.16 °C in cell culture media. The novel hydrogel also exhibited reversible temperature responsibility. Deswelling kinetics indicated that the copolymerized hydrogel deswelled more rapidly than poly(N-isopropylacrylamide) hydrogel. Since GA has specific binding capacity to asialoglycoprotein receptors on the membrane of hepatocyte, this novel hydrogel with GA could be expected as good candidate for hepatic cell culture.  相似文献   

11.
The high conductivities and good mechanical properties of hydrogel electrolyte films are critical for energy storage devices with high flexibility, fast redox kinetics, and long life. Herein, a low water content (6.63 wt%) hydrogel film is prepared, and a favorable environment is created, with an electrochemical stability window of 2.26 V and a high ionic conductivity of 2.6 mS cm−1. The hydrogel film exhibits good folding ability, low in-plane swelling, and anti-freezing abilities. These properties are benefitted by immobilizing free water molecules on the abundant oxygenic groups of polymer fibers in the hydrogel film, offering a unique 3D channel to allow Li+ to quickly transport along the polymer network. Therefore, the hydrogel film-based all-in-one flexible cell exhibits stable cycling performance with a retention of 81.8% of the initial capacity after 500 cycles at room temperature and 66.2% of capacity retention at −30 °C. Furthermore, the full cell with high cathode loading (≈21 mg cm−2) exhibits a high areal capacity of 2.5 mAh cm−2 (≈119 mAh g−1). The overall merits of flexible all-in-one quasi-solid-state batteries demonstrate high potential to be used for power wearable electronics.  相似文献   

12.
A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni2+ ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH4 aqueous solution, the Ni2+ ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH4. A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s−1 g−1, which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity.  相似文献   

13.
Blindness due to opacity of the cornea is treated by corneal transplantation with donor tissue. Due to the limited supply of suitable donor corneas, the need for synthetic corneal equivalents is clear. Herein we report the design and in vitro characterization of a hydrogel-based implant; this implant will serve as a permanent, transparent, space-filling onlay with a two-layer design that mimics the native corneal stratification to support surface epithelialization and foster integration with the surrounding tissue. The top layer of the implant was composed of a 2-hydroxyethylmethacrylate hydrogel containing methacrylic acid as the co-monomer (HEMA-co-MAA) with tunable dimensions and compressive modulus ranging from 700-1000 kPa. The bottom layer, which constitutes the bulk of the implant and is designed to provide integration with the corneal stroma, is a dendrimer hydrogel with high water content and compressive modulus ranging from 500-1200 kPa. Both hydrogels were found to possess optical and diffusion properties similar to those of the human cornea. In addition, composite implants with uniform and structurally sound interfaces were formed when the gels were sequentially injected and cross-linked in the same mold. HEMA-co-MAA hydrogels were covalently modified with type I collagen to enable corneal epithelial cell adhesion and spreading that was dependent upon the collagen coating density but independent of hydrogel stiffness. Similarly, dendrimer hydrogels supported the adhesion and spreading of corneal fibroblasts upon modification with the adhesion ligand arginine-glycine-aspartic acid (RGD). Fibroblast adhesion was not dependent upon dendrimer hydrogel stiffness for the formulations studied and, after in vitro culture for 4 weeks, fibroblasts remained able to adhere to and conformally coat the hydrogel surface. In conclusion, the tunable physical properties and structural integrity of the laminated interface suggests that this design is suitable for further study. The judicious tuning of material properties and inclusion of bioactive moieties is a promising strategy for promotion of implant epithelialization and tissue integration.  相似文献   

14.
《Materials Letters》2007,61(4-5):937-941
The (Pb, La)TiO3 (PLT) ferroelectric thin films with and without a special buffer layer of PbOx have been deposited on Pt/Ti/SiO2/Si(100) substrates by RF magnetron sputtering technique at room temperature. The microstructure and the surface morphology of the films annealed at 600 °C for 1 h have been investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The surface roughness of the PLT thin film with a special buffer layer was 4.45 nm (5 μm × 5 μm) in comparison to that of 31.6 nm (5 μm × 5 μm) of the PLT thin film without a special buffer layer. Ferroelectric properties such as polarization hysteresis loop (PV loop) and capacitance–voltage curve (CV curve) of the films were investigated. The remanent polarization (Pr) and the coercive field (Ec) are 21 μC/cm2 and 130 kV/cm respectively, and the pyroelectric coefficient is 2.75 × 10 8 C/cm2 K for the PLT film with a special buffer layer. The results indicate that the (Pb, La)TiO3 ferroelectric thin films with excellent ferroelectric properties can be deposited by RF magnetron sputtering with a special buffer layer.  相似文献   

15.
Regulation of the growth of vascular endothelial cells (ECs) and smooth muscle cells (SMCs) with artificial vascular grafts at vascularization is well‐known to regenerate functional blood vessels for treating cardiovascular disease; however, little research has been published on this subject. Here, a novel polymer vascular graft is presented, whose inner surface contains an assembled circular microgroove pattern decorated with a combination of concentric circular microgrooves and radial, straight microgrooves inspired by the orientation of SMCs and ECs in natural tissues. The surface micropatterns can produce dynamically tunable variations via the thermally switched shape memory. The results from the in vitro EC/SMC co‐cultures reveal that the surface micropatterns have a great capacity to regulate the specific distribution of ECs/SMCs because the ECs grow along the radial, straight microgrooves and the SMCs grow along concentric circular microgrooves. The in vivo vascularization is further analyzed by implanting the vascular graft in the rabbit carotid artery. Both histological analysis and immunofluorescence staining demonstrate that it is capable of highly effectively capturing ECs and SMCs in the blood and subsequent regeneration of new blood vessels. Therefore, this study opens a new possibility for regenerating neovessels to replace and repair damaged vessels for cardiovascular diseases treatment.  相似文献   

16.
Transcatheter embolization is a minimally invasive procedure that uses embolic agents to intentionally block diseased or injured blood vessels for therapeutic purposes. Embolic agents in clinical practice are limited by recanalization, risk of non-target embolization, failure in coagulopathic patients, high cost, and toxicity. Here, a decellularized cardiac extracellular matrix (ECM)-based nanocomposite hydrogel is developed to provide superior mechanical stability, catheter injectability, retrievability, antibacterial properties, and biological activity to prevent recanalization. The embolic efficacy of the shear-thinning ECM-based hydrogel is shown in a porcine survival model of embolization in the iliac artery and the renal artery. The ECM-based hydrogel promotes arterial vessel wall remodeling and a fibroinflammatory response while undergoing significant biodegradation such that only 25% of the embolic material remains at 14 days. With its unprecedented proregenerative, antibacterial properties coupled with favorable mechanical properties, and its superior performance in anticoagulated blood, the ECM-based hydrogel has the potential to be a next-generation biofunctional embolic agent that can successfully treat a wide range of vascular diseases.  相似文献   

17.
A photodegradable material‐based approach to generate endothelialized 3D vascular networks within cell‐laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user‐defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next‐generation microfluidics and directed cell function.  相似文献   

18.
One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering.  相似文献   

19.
We prepared micron and submicron polymethylmethacrylate (PMMA) layers by the spin-coating method. We investigated the possibility to orientate polymer dipoles in electric field in the glass transition area (T g) and the fluid temperature of PMMA with the aim to increase its refractive index (n) after the layer is cooled below T g. We have studied the effect of electric field (up to 12 kV cm−1) on change of surface morphology of the layer, dependence of n and contact angle (surface wettability) on the field and dependence of layers orientation on orientation of electric field. The surface morphology was examined using atomic force microscopy (AFM), contact angles were measured by goniometer, film thickness was measured by profilometer, refractive index of films was determined using refractometer. The change of refractive index as dependent on the PMMA layer orientation in electric field depends on temperature and electric field. The highest change in n was found for electric field 11 kV cm−1. The change in contact angle (wettability) on surface of an orientated PMMA layer confirms the dipoles orientation in electric field unambiguously. The orientation of layers causes a “slight” change in their morphology and a “slight” increase of surface roughness only for one direction of field effect. Change in colour for oriented layers does not depend on orientation of electric field.  相似文献   

20.
Goal was to engineer biological, arterial grafts with antithrombotic, autologous endothelial luminal surface combined with extraluminal smooth vascular muscle layer (VSMC) and to test in vivo. (1) Different decellularisation methods described in literature were compared to identify the most suitable one with focus on the preservation of extracellular fibre matrix. (2) Endothelial precursor cells (EPC), isolated from bone marrow and VSMC from small venous segments of donor animals were cultivated. Cells were seeded sandwich‐like on homologous decellularized venous scaffolds and conditioned under pulsatile circulation in a bioreactor. (3) The semiautologous grafts were implanted in carotidal position on both sides in five Beagle dogs (n = 10; group 2) as interposition. A group of five animals, receiving only acellular grafts in both carotid positions (n = 10; group 1) served as controls. Comparison of four in literature described decellularisation methods showed different preservation of elastic and collagen fibres compared with native veins, whereas decellularity was similar in all methods. This forced us to choose a decellularization protocol with the best preservation of the extracellular matrix. The in vivo experiments showed in group 1 (control) already after one week a complete thrombotic occlusion of the decellularized implants, whereas in group 2 9/10 semiautologous grafts were patent after 98 ± 4 days in ultrasound, angiography and histology (p = 0.0001). A complete incorporation of semiautologous grafts in the surrounding tissue could be shown. The seeding with two different cell types preserved an aneurysmatic degeneration under arterial conditions with patency without anticoagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号