首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential of increasing proteolysis as a means of enhancing the texture and heat-induced flow of half-fat, half-salt Cheddar cheese made with control culture (CL, Lactococcus lactis subsp. cremoris/lactis) or adjunct culture (AC, CL + Lactobacillus helveticus) was investigated. Proteolysis was altered by substituting bovine chymosin (BC) with camel chymosin (CC), or by a 2.5-fold increase in level of BC. In cheese with CL-culture, increasing BC led to a large increase in pH and more rapid degradation of αS1-casein during maturation, and cheese that was less firm after 180 d. In contrast, substitution of BC with CC in cheeses made with CL-culture had an opposite effect. While chymosin type and level had a similar influence on αS1-casein hydrolysis in the AC-culture cheeses, it did not affect texture or flowability. Grading indicated that cheese made with AC-culture and with a higher level of BC was the most appealing.  相似文献   

2.
Sun Young Kim 《LWT》2011,44(2):582-587
Changes in physicochemical properties of 12-wk-old, half-fat (50 g/100 g reduced-fat) and full-fat Cheddar cheeses on heating at 180 °C for 25 min were investigated. The loss of moisture and fat in both cheeses were proportional to their initial amounts present; both protein:fat ratio and protein:moisture ratio were higher in half-fat cheese than in full-fat cheese. Various types of protein interactions during melting were measured by dispersing cheeses in different dissociating agents (SDS, EDTA, mercaptoethanol, and urea). Protein interactions which were expressed by dissolving heated cheese in urea appeared to contribute the most; this was followed by those expressed by dissolving in SDS. In interaction with temperature, dissociating agents appeared to have the greatest effect on the undissociated proteins still present. The protein-protein interactions during melting of cheeses, which form the hard surface skin in reduced-fat cheeses, were shown to involve disulfide bonds and hydrophobic interactions and to some extent ionic bonds with calcium.  相似文献   

3.
Yield, textural, proteolysis, melting, and sensory properties of exopolysaccharide-producing Lactobacillus paracasei on properties of half-fat (about 16 g fat/100 g cheese) Cheddar cheese during ripening at 8℃ for up to six months were investigated. The results revealed that B-3 cheese, made with 2.0% (v/v) high yield exopolysaccharide-producing L. paracasei in combination with 0.011% (w/w) commercial Cheddar culture (B-3 cheese), had a 10.15, 7.71, and 10.04% separately increase in moisture content and had a 7.70, 5.05, and 6.76% separately increase in yield compared with B-2, B-4, and B-5 cheese, texture and melting characteristics were significantly improved (P < 0.05), sensory score surpassed B-4 and B-5 cheese and was similar to the full-fat one. Any differences of B-3 cheese detected among half-fat Cheddar cheeses were attributed to the presence of high yield exopolysaccharide-producing L. paracasei.  相似文献   

4.
The objective of this study was to compare the effect of coagulant (bovine calf chymosin, BCC, or camel chymosin, CC), on the functional and sensory properties and performance shelf-life of low-moisture, part-skim (LMPS) Mozzarella. Both chymosins were used at 2 levels [0.05 and 0.037 international milk clotting units (IMCU)/mL], and clotting temperature was varied to achieve similar gelation times for each treatment (as this also affects cheese properties). Functionality was assessed at various cheese ages using dynamic low-amplitude oscillatory rheology and performance of baked cheese on pizza. Cheese composition was not significantly different between treatments. The level of total calcium or insoluble (INSOL) calcium did not differ significantly among the cheeses initially or during ripening. Proteolysis in cheese made with BCC was higher than in cheeses made with CC. At 84 d of ripening, maximum loss tangent values were not significantly different in the cheeses, suggesting that these cheeses had similar melt characteristics. After 14 d of cheese ripening, the crossover temperature (loss tangent = 1 or melting temperature) was higher when CC was used as coagulant. This was due to lower proteolysis in the CC cheeses compared with those made with BCC because the pH and INSOL calcium levels were similar in all cheeses. Cheeses made with CC maintained higher hardness values over 84 d of ripening compared with BCC and maintained higher sensory firmness values and adhesiveness of mass scores during ripening. When melted on pizzas, cheese made with CC had lower blister quantity and the cheeses were firmer and chewier. Because the 2 types of cheeses had similar moisture contents, pH values, and INSOL Ca levels, differences in proteolysis were responsible for the firmer and chewier texture of CC cheeses. When cheese performance on baked pizza was analyzed, properties such as blister quantity, strand thickness, hardness, and chewiness were maintained for a longer ripening time than cheeses made with BCC, indicating that use of CC could help to extend the performance shelf-life of LMPS Mozzarella.  相似文献   

5.
Effect of pH and calcium concentration on proteolysis in mozzarella cheese   总被引:1,自引:0,他引:1  
Low-moisture Mozzarella cheeses (LMMC), varying in calcium content and pH, were made using a starter culture (control; CL) or direct acidification (DA) with lactic acid or lactic acid and glucono-delta-lactone. The pH and calcium concentration significantly affected the type and extent of proteolysis in Mozzarella cheese during the 70-d storage period at 4 degrees C. For cheeses with a similar pH, reducing the calcium-to-casein ratio from -29 to 22 mg/g of protein resulted in marked increases in moisture content and in primary and secondary proteolysis, as indicated by polyacrylamide gel electrophoresis and higher levels of pH 4.6- and 5%-PTA-soluble N. Increasing the pH of DA cheeses of similar moisture content, from approximately 5.5 to 5.9, while maintaining the calcium-to-casein ratio almost constant at approximately 29 mg/g, resulted in a decrease in primary proteolysis but had no effect on secondary proteolysis. Comparison of CL and DA cheeses with a similar composition showed that the CL cheese had higher levels of alpha(s1)-CN degradation, pH 4.6- and 5%-PTA-soluble N. Analysis of pH 4.6-soluble N extracts by reverse-phase HPLC showed that the CL cheese had higher concentrations of compounds with low retention times, suggesting higher concentrations of low molecular mass peptides and free amino acids.  相似文献   

6.
Fat-reduced cheeses often suffer from undesirable texture, flavor, and cooking properties. Exopolysaccharides (EPS) produced by starter strains have been proposed as a mechanism to increase yield and to improve the texture and cooking properties of reduced-fat cheeses. The objective of this work was to assess the influence of an exopolysaccharide on the yield, texture, cooking properties, and quality of half-fat Cheddar cheese. Two pilot-scale half-fat Cheddar cheeses were manufactured using single starters of an isogenic strain of Lactococcus lactis ssp. cremoris (DPC6532 and DPC6533) that differed in their ability to produce exopolysaccharide. Consequently, any differences detected between the cheeses were attributed to the presence of the exopolysaccharide. The results indicated that cheeses made with the exopolysaccharide-producing starter had an 8.17% increase in actual cheese yield (per 100 kg of milk), a 9.49% increase in moisture content, increase in water activity and water desorption rate at relative humidities ≤90%, significant differences in the cheeses microstructure, and a significant improvement in both textural and cooking properties, without negatively affecting the flavor profiles of the cheeses.  相似文献   

7.
The compositional and functional properties of commercial retail and/or wholesale samples (n = 8) of low-moisture mozzarella, cheddar and analogue (pizza) cheeses were compared. Inter-and intravariety differences were evident with intravariety differences in composition being relatively large for the analogue cheese. Cheddar had the lowest mean pH and level of expressible serum and the highest mean levels of proteolysis, expressible fat, and serum calcium and nitrogen (p < 0.05). Compared to mozzarella, the analogue cheeses had significantly lower (p < 0.05) mean levels of total protein and serum calcium, higher levels of total calcium and higher cheese pH. The mean stretchability of the melted mozzarella cheese was significantly higher than that of the melted cheddar or analogue cheeses. The melted cheddar had the highest mean flowability and lowest mean apparent viscosity (p < 0.05). The mean flowability and apparent viscosity of the analogue cheese were numerically lower and higher, respectively, than those of mozzarella.  相似文献   

8.
The aim of this study was to evaluate the influence of lamb rennet paste on the proteolysis and textural properties of Murcia al Vino cheese, compared with calf rennet. The enzyme concentration was adjusted according to its milk-clotting activity. The use of rennet paste led to higher values of all nitrogen fractions studied. Significant increases were observed in the water-soluble nitrogen fraction as a result of the lower pH of rennet paste cheeses; although the rennet paste is not characterised, three proteases are reported in the references consulted which can justify the greater proteolysis compared with calf rennet. The use of natural rennet paste produces a cheese with a more hydrolysed protein matrix, which is associated with significant changes in texture. The greater firmness determined in the rennet paste cheese was associated with higher fracture stress, lower fracture strain and lower moisture content.  相似文献   

9.
Abstract: The effect of curd washing on functional properties of low-moisture mozzarella cheese made with galactose-fermenting culture was investigated. A total of 4 curd washing levels (0%, 10%, 25%, 50% wt/wt) were used during low-moisture mozzarella cheese manufacture, and cheeses were stored for 63 d at 4 °C and the influence of curd washing on proteolysis and functionality of low-moisture mozzarella cheese were examined. Curd washing had a significant effect on moisture and ash contents. In general, moisture contents increased and ash contents decreased with increased curd washing levels. Low-moisture mozzarella cheese made with 10% curd washing levels showed higher proteolysis, meltability, and stretchability during storage than other experimental cheeses. In general, galactose contents decreased during storage; however, cheeses made with 25% and 50% curd washing levels had lower galactose contents than those with control or 10%. L*-values (browning) decreased and proteolysis increased in low-moisture mozzarella cheeses during storage.  相似文献   

10.
11.
Pizza cheese was manufactured with milk (12.1% total solids, 3.1% casein, 3.1% fat) standardized with microfiltered (MF) and diafiltered retentates. Polymeric, spiral-wound MF membranes were used to process cold (<7°C) skim milk, and diafiltration of MF retentates resulted in at least 36% removal of serum protein on a true protein basis. Cheese milks were obtained by blending the MF retentate (16.4% total solids, 11.0% casein, 0.4% fat) with whole milk (12.1% total solids, 2.4% casein, 3.4% fat). Control cheese was made with part-skim milk (10.9% total solids, 2.4% casein, 2.4% fat). Initial trials with MF standardized milk resulted in cheese with approximately 2 to 3% lower moisture (45%) than control cheese (∼47 to 48%). Cheese-making procedures (cutting conditions) were then altered to obtain a similar moisture content in all cheeses by using a lower setting temperature, increasing the curd size, and lowering the wash water temperature during manufacture of the MF cheeses. Two types of MF standardized cheeses were produced, one with preacidification of milk to pH 6.4 (pH6.4MF) and another made from milk preacidified to pH 6.3 (pH6.3MF). Cheese functionality was assessed by dynamic low-amplitude oscillatory rheology, University of Wisconsin MeltProfiler, and performance on pizza. Nitrogen recoveries were significantly higher in MF standardized cheeses. Fat recoveries were higher in the pH6.3MF cheese than the control or pH6.4MF cheese. Moisture-adjusted cheese yield was significantly higher in the 2 MF-fortified cheeses compared with the control cheese. Maximum loss tangent (LTmax) values were not significantly different among the 3 cheeses, suggesting that these cheeses had similar meltability. The LTmax values increased during ripening. The temperature at which the LTmax was observed was highest in control cheese and was lower in the pH6.3MF cheese than in the pH6.4MF cheese. The temperature of the LTmax decreased with age for all 3 cheeses. Values of 12% trichloroacetic acid soluble nitrogen levels were similar in all cheeses. Performance on pizza was similar for all cheeses. The use of MF retentates derived with polymeric membranes was successful in increasing cheese yield, and cheese quality was similar in the control and MF standardized cheeses.  相似文献   

12.
The impact of calcium on softening, melting, and flow characteristics of part skim Mozzarella cheese was evaluated. Four cheeses containing different calcium levels (viz. 0.65, 0.48, 0.42, and 0.35%) were manufactured by direct acidification using glucono-delta-lactone on four different occasions. Preacidification of milk was done to alter the calcium content of the cheeses. Cheeses were made with uniform composition. Lowering of calcium to 25, 35, and 45% levels increased the melt by 1.4, 2.1, and 2.6 times, respectively, 1 d after manufacture. Low calcium cheeses softened and melted at lower time and temperatures. These cheeses flowed faster and to a greater extent. Higher proteolysis at a faster rate was observed in low calcium cheeses. Refrigerated storage up to 30 d also increased melt area, flow rate, extent of flow, and soluble protein and lowered softening and melting times in all the cheeses. The effect of calcium reduction was more noticeable as compared to the effect of storage on functionality of Mozzarella cheese. Improved softening, melting, and flow properties of low calcium part skim Mozzarella cheese is a clear advantage to cheese manufacturers and end users as they may not have to wait 15 to 20 d for proteolysis of cheese to obtain desired melt properties.  相似文献   

13.
Influence of calcium, moisture, and pH on structure and functionality of direct-acid, nonfat Mozzarella cheese was studied. Acetic acid and citric acid were used to acidify milk to pH 5.8 and 5.3 with the aim of producing cheeses with 70 and 66% moisture, and 0.6 and 0.3% calcium levels. Cheeses containing 0.3% calcium were softer and more adhesive than cheeses containing 0.6% calcium, and flowed further when heated. Cheeses with the same calcium content (0.6%), the same moisture content, but set at different pH values (pH 5.3 and 5.8), exhibited no significant differences in melting or firmness. Increasing cheese moisture content from 66 to 70% produced a softer cheese but did not increase meltability. Such differences in functionality corresponded with differences in structure and arrangement of proteins in the cheese protein matrix. Microstructure of cheese with 0.6% calcium had an increase in protein folds and serum pockets compared with the 0.3% calcium cheeses that had a more homogeneous structure. Protein matrix in the low-calcium cheese appeared less dense indicating the proteins were more hydrated. In the 0.6% calcium cheeses, the proteins appeared more aggregated and had larger spaces between protein aggregates. Thus, between pH 5.3 and 5.8, calcium controls cheese functionality, and pH has only an indirect affect related to its influence on the calcium in cheese.  相似文献   

14.
《Journal of dairy science》1986,69(12):2982-2993
Fifteen Swiss-type cheeses were evaluated by a flavor profile method. The cheeses also were analyzed for free fatty acids in whole cheese and in the oil phase and for proteolysis, pH, carbonyls, and gross composition. The flavor notes and chemical parameters were grouped by factor analysis and correlated. Factor analysis showed that many of the free fatty acids varied together. The free fatty acid groups consisted of normal short-chain fatty acids (C4 to C10), long-chain fatty acids (C12 to C18), and branched short-chain and aromatic acids. Many of the flavor notes also were correlated. Characteristic Swiss cheese flavor notes were correlated with low pH, lipolysis, and acetic and propionic acids. Other flavors were negatively correlated with the oil to cheese distribution of many of the free fatty acids and positively correlated with pH, salt concentration, proteolysis, moisture, branched and aromatic acids, and carbonyls.  相似文献   

15.
Full fat, milled-curd Cheddar cheeses (2 kg) were manufactured with 0.0 (control), 0.1, 1.0, or 10.0 μmol of pepstatin (a potent competitive inhibitor of chymosin) added per liter of curds/whey mixture at the start of cooking to obtain residual chymosin levels that were 100, 89, 55, and 16% of the activity in the control cheese, respectively. The cheeses were ripened at 8°C for 180 d. There were no significant differences in the pH values of the cheeses; however, the moisture content of the cheeses decreased with increasing level of pepstatin addition. The levels of pH 4.6-soluble nitrogen in the 3 cheeses with added pepstatin were significantly lower than that of the control cheese at 1 d and throughout ripening. Densitometric analysis of urea-PAGE electro-phoretograms of the pH 4.6-insoluble fractions of the cheese made with 10.0 μmol/L of pepstatin showed complete inhibition of hydrolysis of αS1-casein (CN) at Phe23-Phe24 at all stages of ripening. The level of insoluble calcium in each of 4 cheeses decreased significantly during the first 21 d of ripening, irrespective of the level of pepstatin addition. Concurrently, there was a significant reduction in hardness in each of the 4 cheeses during the first 21 d of ripening. The softening of texture was more highly correlated with the level of insoluble calcium than with the level of intact αS1-CN in each of the 4 cheeses early in ripening. It is concluded that hydrolysis of αS1-CN at Phe23-Phe24 is not a prerequisite for softening of Cheddar cheese during the early stages of ripening. We propose that this softening of texture is principally due to the partial solubilization of colloidal calcium phosphate associated with the para-CN matrix of the curd.  相似文献   

16.
To determine the influence of milk preacidification with CO(2) on Cheddar cheese aging and proteolysis, cheese was manufactured from milk with and without added CO(2). The experiment was replicated 3 times. Carbon dioxide (approximately 1600 ppm) was added to the cold milk, resulting in a milk pH of 5.9 at 31 degrees C in the cheese vat. The starter and coagulant usage rates were equal for the control and CO(2) treatment cheeses. The calcium content of the CO(2) treatment cheese was lower, but no difference in moisture content was detected. The higher CO(2) content of the treatment cheeses (337 vs. 124 ppm) was maintained throughout 6 mo of aging. In spite of having almost one and a half times the salt-in-moisture, proteolysis as measured by pH 4.6 and 12% trichloroacetic acid soluble nitrogen expressed as percentages of total nitrogen, was higher in the CO(2) treatment cheeses throughout aging. The ratio of alpha(s)-casein (CN) to para-kappa-CN decreased faster in the CO(2) treatment cheeses than in the control cheeses, especially before refrigerated storage. No difference was detected in the ratio of beta-CN to para-kappa-CN between the control and CO(2) treatment cheeses. Intact alpha(s)- and beta-CN were found in the expressible serum (ES) from the CO(2) treatment cheese as well as alpha(s1)-I-CN, but they were not detected in the ES from the control cheese. No CN was detected in the ES from the curd before the salting of either the control or CO(2) treatment cheese. Higher proteolysis in the cheese made from milk preacidified with CO(2) may have been due to increased substrate availability in the water phase or increased chymosin activity or retention in the cheese.  相似文献   

17.
The effect of calcium reduction (as a result of milk preacidification) on post-melt chewiness and whiteness of low fat Mozzarella cheese was determined. Four vats (230 kg of milk per vat) of cheese were made in 1 d using no preacidification (control), preacidification pH 6.0 and pH 5.8 with acetic acid, and preacidification to pH 5.8 with citric acid. Cheese manufacture was repeated on four different days using a randomized complete block design. The total calcium content and the water-insoluble calcium content of the cheese were lower in the cheeses made from preacidified milks. The amount of water-soluble and water-insoluble calcium changed during refrigerated storage, as did pH. The post-melt chewiness and whiteness of low fat Mozzarella cheese were affected by milk preacidification. The largest level of calcium reduction and modification in post-melt chewiness and whiteness occurred in the pH 5.8 citric treatment. Multiple regression analysis of post-melt chewiness and cheese whiteness at 38 degrees C after heating and cooling indicated that both water-insoluble calcium and proteolysis were strongly associated with changes in the post-melt chewiness and whiteness of low fat Mozzarella cheese. High levels of proteolysis and low levels of water-insoluble calcium were associated with decreased post-melt chewiness and whiteness of low fat Mozzarella cheese.  相似文献   

18.
This study investigated the effect of centrifugation (9,000 × g, 50°C, flow rate = 1,000 L/h), as well as the incorporation of high-heat-treated (HHT) centrifugate into cheese milk on the composition, texture, and ripening characteristics of Maasdam cheese. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a pronounced effect on the compositional parameters of any experimental cheeses, except for moisture and moisture in nonfat substance (MNFS) levels. Incorporation of HHT centrifugate at a rate of 6 to 10% of the total milk weight into centrifuged milk increased the level of denatured whey protein in the cheese milk and also increased the level of MNFS in the resultant cheese compared with cheeses made from centrifuged milk and control cheeses; moreover, cheese made from centrifuged milk had ~3% higher moisture content on average than control cheeses. Centrifugation of cheese milk reduced the somatic cell count by ~95% relative to the somatic cell count in raw milk. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a significant effect on age-related changes in pH, lactate content, and levels of primary and secondary proteolysis. However, the value for hardness was significantly lower for cheeses made from milk containing HHT centrifugate than for other experimental cheese types. Overall, centrifugation appeared to have little effect on composition, texture, and ripening characteristics of Maasdam cheese. However, care should be taken when incorporating HHT centrifugate into cheese milk, because such practices can influence the level of moisture, MNFS, and texture (particularly hardness) of resultant cheeses. Such differences may have the potential to influence subsequent eye development characteristic, although no definitive trends were observed in the present study and further research on this is recommended.  相似文献   

19.
《Journal of dairy science》2022,105(11):8734-8749
Camel (CM) milk is used in variety of ways; however, it has inferior gelling properties compared with bovine milk (BM). In this study, we aimed to investigate the physicochemical, functional, microstructural, and rheological properties of low-moisture part-skim (LMPS) mozzarella cheese, made from BM, or BM mixed with 15% CM (CM15%) or 30% CM (CM30%), at various time points (up to 60 d) of storage at 4°C after manufacture. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% had high moisture and total Ca contents, but lower soluble Ca content. Compared with BM cheese, CM15% and CM30% LMPS mozzarella cheese exhibited higher proteolysis rates during storage. Adding CM affected the color properties of LMPS mozzarella cheese manufactured from mixed milk. Scanning electron microscopy images showed that the microstructure of CM15% and CM30% cheeses had smooth surfaces, whereas the BM cheese microstructures were rough with granulated surfaces. Low-moisture part-skim mozzarella cheeses using CM15% and CM30% showed significantly lower hardness and chewiness, but higher stringiness than BM cheese. Compared with BM cheese, CM15% and CM30% cheeses showed lower tan δ levels during temperature surges, suggesting that the addition of CM increased the meltability of LMPS mozzarella cheese during temperature increases. Camel milk addition affected the physicochemical, microstructural, and rheological properties of LMPS mozzarella cheese.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号