共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the existing recommender systems understand the preference level of users based on user-item interaction ratings. Rating-based recommendation systems mostly ignore negative users/reviewers (who give poor ratings). There are two types of negative users. Some negative users give negative or poor ratings randomly, and some negative users give ratings according to the quality of items. Some negative users, who give ratings according to the quality of items, are known as reliable negative users, and they are crucial for a better recommendation. Similar characteristics are also applicable to positive users. From a poor reflection of a user to a specific item, the existing recommender systems presume that this item is not in the user’s preferred category. That may not always be correct. We should investigate whether the item is not in the user’s preferred category, whether the user is dissatisfied with the quality of a favorite item or whether the user gives ratings randomly/casually. To overcome this problem, we propose a Social Promoter Score (SPS)-based recommendation. We construct two user-item interaction matrices with users’ explicit SPS value and users’ view activities as implicit feedback. With these matrices as inputs, our attention layer-based deep neural model deepCF_SPS learns a common low-dimensional space to present the features of users and items and understands the way users rate items. Extensive experiments on online review datasets present that our method can be remarkably futuristic compared to some popular baselines. The empirical evidence from the experimental results shows that our model is the best in terms of scalability and runtime over the baselines. 相似文献
4.
Multimedia Tools and Applications - Massive amounts of data are available on social websites, therefore finding the suitable item is a challenging issue. According to recent social statistics, we... 相似文献
5.
近年来社交媒体越来越流行,可以从中获得大量丰富多彩的信息的同时,也带来了严重的"信息过载"问题.推荐系统作为缓解信息过载最有效的方法之一,在社交媒体中的作用日趋重要.区别于传统的推荐方法,社交媒体中包含大量的用户产生内容,因此在社交媒体中,通过结合传统的个性化的推荐方法,集成各类新的数据、元数据和清晰的用户关系,产生了各种新的推荐技术.总结了社交推荐系统中的几个关键研究领域,包括基于社会化标注的推荐、组推荐和基于信任的推荐,之后介绍了在信息推荐中考虑时间因素时的情况,最后对社交媒体中信息推荐有待深入研究的难点和发展趋势进行了展望. 相似文献
6.
News recommendation and user interaction are important features in many Web-based news services. The former helps users identify the most relevant news for further information. The latter enables collaborated information sharing among users with their comments following news postings. This research is intended to marry these two features together for an adaptive recommender system that utilizes reader comments to refine the recommendation of news in accordance with the evolving topic. This then turns the traditional “push-data” type of news recommendation to “discussion” moderator that can intelligently assist online forums. In addition, to alleviate the problem of recommending essentially identical articles, the relationship ( duplicate, generalization, or specialization) between recommended news articles and the original posting is investigated. Our experiments indicate that our proposed solutions provide an improved news recommendation service in forum-based social media. 相似文献
8.
YouTube-like video sharing sites (VSSes) have gained increasing popularity in recent years. Meanwhile, Face-book-like online social networks (OSNs) have seen their tremendous success in connecting people of common interests. These two new generation of networked services are now bridged in that many users of OSNs share video contents originating from VSSes with their friends, and it has been shown that a significant portion of views of VSS videos are attributed to this sharing scheme of social networks. To understand how the video sharing behavior, which is largely based on social relationship, impacts users’ viewing pattern, we have conducted a long-term measurement with RenRen and YouKu, the largest online social network and the largest video sharing site in China, respectively. We show that social friends have higher common interest and their sharing behaviors provide guidance to enhance recommended video lists. In this paper, we take a first step toward learning OSN video sharing patterns for video recommendation. An autoencoder model is developed to learn the social similarity of different videos in terms of their sharing in OSNs. We, therefore, propose a similarity-based strategy to enhance video recommendation for YouTube-like social media. Evaluation results demonstrate that this strategy can remarkably improve the precision and recall of recommendations, as compared to other widely adopted strategies without social information. 相似文献
9.
Social media has evolved into one of the most important channels to share micro-videos nowadays. The sheer volume of micro-videos available in social networks often undermines users’ capability to choose the micro-videos that best fit their interests. Recommendation appear as a natural solution to this problem. However, existing video recommendation methods only consider the users’ historical preferences on videos, without exploring any video contents. In this paper, we develop a novel latent genre aware micro-video recommendation model to solve the problem. First, we extract user-item interaction features, and auxiliary features describing both contextual and visual contents of micro-videos. Second, these features are fed into the neural recommendation model that simultaneously learns the latent genres of micro-videos and the optimal recommendation scores. Experiments on real-world dataset demonstrate the effectiveness and the efficiency of our proposed method compared with several state-of-the-art approaches. 相似文献
10.
In many E-commerce recommender systems, a special class of recommendation involves recommending items to users in a life cycle. For example, customers who have babies will shop on Diapers.com within a relatively long period, and purchase different products for babies within different growth stages. Traditional recommendation algorithms produce recommendation lists similar to items that the target user has accessed before (content filtering), or compute recommendation by analyzing the items purchased by the users who are similar to the target user (collaborative filtering). Such recommendation paradigms cannot effectively resolve the situation with a life cycle, i.e., the need of customers within different stages might vary significantly. In this paper, we model users’ behavior with life cycles by employing hand-crafted item taxonomies, of which the background knowledge can be tailored for the computation of personalized recommendation. In particular, our method first formalizes a user’s long-term behavior using the item taxonomy, and then identifies the exact stage of the user. By incorporating collaborative filtering into recommendation, we can easily provide a personalized item list to the user through other similar users within the same stage. An empirical evaluation conducted on a purchasing data collection obtained from Diapers.com demonstrates the efficacy of our proposed method. 相似文献
11.
Multimedia Tools and Applications - Automatic assessment of soft skills is an interesting problem in social computing. Soft skills are essential to any individual for personal and career... 相似文献
12.
The Journal of Supercomputing - Consumer sentiment is one of the essential measures of predictive recommendations in travel and tourism. Nowadays, a massive amount of data is available on the... 相似文献
13.
World Wide Web - Integrating social networks as auxiliary information shows effectiveness in improving the performance for a recommendation task. Typical models usually characterize the user trust... 相似文献
14.
Recommender systems are designed to solve the information overload problem and have been widely studied for many years. Conventional recommender systems tend to take ratings of users on products into account. With the development of Web 2.0, Rating Networks in many online communities (e.g. Netflix and Douban) allow users not only to co-comment or co-rate their interests (e.g. movies and books), but also to build explicit social networks. Recent recommendation models use various social data, such as observable links, but these explicit pieces of social information incorporating recommendations normally adopt similarity measures (e.g. cosine similarity) to evaluate the explicit relationships in the network - they do not consider the latent and implicit relationships in the network, such as social influence. A target user’s purchase behavior or interest, for instance, is not always determined by their directly connected relationships and may be significantly influenced by the high reputation of people they do not know in the network, or others who have expertise in specific domains (e.g. famous social communities). In this paper, based on the above observations, we first simulate the social influence diffusion in the network to find the global and local influence nodes and then embed this dual influence data into a traditional recommendation model to improve accuracy. Mathematically, we formulate the global and local influence data as new dual social influence regularization terms and embed them into a matrix factorization-based recommendation model. Experiments on real-world datasets demonstrate the effective performance of the proposed method. 相似文献
15.
Recommendation techniques greatly promote the development of online service in the interconnection environment. Personalized recommendation has attracted researchers’ special attention because it is more targeted to individual tasks with the characteristics of diversification and novelty. However, the data sets that personalized recommendation process usually possess the characteristics of data sparseness and information loss, which is more likely to have problems such as cognitive deviation and interest drift. To solve these issues, in recent years people gradually notice the important role in which trust factor plays in promoting the development of personalized recommendation. Given the difference between online social trust and traditional offline social trust in facilitating personalized recommendation, this paper proposes a novel technique of online social trust reinforced personal recommendation to improve the recommendation performance. Compared with traditional offline social trust-based personal recommendation, our work synthesizes both factors of online social trust and offline social trust to identify private and public trusted user communities. The trusted degree or the accredited degree can be deduced by Bayesian network probabilistic inferences. In this way, the performance of personalized recommendation can be improved by avoiding excessive interest deviation. Moreover, we also get time sequence into personal recommendation model to effectively track how user’s interest changes over time. Accordingly, the recommendation accuracy can be improved by eliminating the unfavorable effect of interest drift caused by temporal variation. Empirical experiments on typical Yelp testing data set illustrate the effectiveness of the proposed recommendation technique. 相似文献
16.
Social tagging systems leverage social interoperability by facilitating the searching, sharing, and exchanging of tagging resources. A major drawback of existing social tagging systems is that social tags are used as keywords in keyword-based search. They focus on keywords and human interpretability rather than on computer interpretable semantic knowledge. Therefore, social tags are useful for information sharing and organizing, but they lack the computer-interpretability needed to facilitate a personalized social tag recommendation. An interesting issue is how to automatically generate a personalized social tag recommendation list to users when a resource is accessed by users. The novel solution proposed in this study is a hybrid approach based on semantic tag-based resource profile and user preference to provide personalized social tag recommendation. Experiments show that the Precision and Recall of the proposed hybrid approach effectively improves the accuracy of social tag recommendation. 相似文献
17.
Tags are very popular in social media (like Youtube, Flickr) and provide valuable and crucial information for social media. But at the same time, there exist a great number of noisy tags, which lead to many studies on tag suggestion and recommendation for items including websites, photos, books, movies, and so on. The textual features of tags, likes tag frequency, have mostly been used in extracting tags that are related to items. In this paper, we address the problem of tag recommendation for social media users. This issue is as important as the tag recommendation for items, because the tags representing users are strongly related to the users’ favorite topics. We propose several novel features of tags for machine learning that we call social features as well as textual features. The experimental results of Flickr show that our proposed scheme achieves viable performance on tag recommendation for users. 相似文献
18.
In the past decades, a large number of music pieces are uploaded to the Internet every day through social networks, such as Last.fm, Spotify and YouTube, that concentrates on music and videos. We have been witnessing an ever-increasing amount of music data. At the same time, with the huge amount of online music data, users are facing an everyday struggle to obtain their interested music pieces. To solve this problem, music search and recommendation systems are helpful for users to find their favorite content from a huge repository of music. However, social influence, which contains rich information about similar interests between users and users’ frequent correlation actions, has been largely ignored in previous music recommender systems. In this work, we explore the effects of social influence on developing effective music recommender systems and focus on the problem of social influence aware music recommendation, which aims at recommending a list of music tracks for a target user. To exploit social influence in social influence aware music recommendation, we first construct a heterogeneous social network, propose a novel meta path-based similarity measure called WPC, and denote the framework of similarity measure in this network. As a step further, we use the topological potential approach to mine social influence in heterogeneous networks. Finally, in order to improve music recommendation by incorporating social influence, we present a factor graphic model based on social influence. Our experimental results on one real world dataset verify that our proposed approach outperforms current state-of-the-art music recommendation methods substantially. 相似文献
19.
The Journal of Supercomputing - With the popularization of wireless Internet technology and smartphones, the importance of recommendation systems, which analyze personality of a user using social... 相似文献
20.
Journal of Intelligent Information Systems - With the rapid development of social networks, the application of social relationships in recommendation systems has attracted more and more attention.... 相似文献
|