首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Suitable gravel availability is critical for the spawning success of lithophilous fishes, including redd builders. Redd construction during spawning can alter substrate characteristics, thereby influencing hydraulic conditions and sediment transport, highlighting the importance of spawning as a zoogeomorphic activity. Here, interactions between redd‐building fish and their spawning environment were investigated for European barbel Barbus barbus with a comparative approach across three English rivers: Teme (western), Great Ouse (eastern) and Idle (central). Sediment characteristics of spawning habitats were similar across the rivers, including subsurface fine sediment (<2 mm) content (≈20% dry weight), but elevated subsurface silt content and coarser surface sediments were found in the river Teme. Water velocities were similar at spawning sites despite differences in channel width and depth. Redds were characterized by a pit and tailspill, with no differences in surface grain‐size characteristics between these and the surrounding riverbed, but with topographic alteration (dimensions and tailspill amplitude) in line with those of salmonids. Estimates of the fraction of the bed that spawning barbel were capable of moving exceeded 97% in all rivers. Estimated reproductive potential varied significantly between the rivers Idle and Teme (3,098 to 9,715 eggs/m2), which was largely due to differences in barbel lengths affecting fecundity. Larger barbel, capable of producing and depositing more eggs, but in more spatially extensive redds, meaning fewer redds per given surface area of riverbed. Predictions of barbel egg mortality based on sand content were low across both rivers. The effects of silt on barbel egg and larvae development are unknown, but the levels detected here would significantly impact salmon egg mortality. Similarities in fish length to redd area and the size of moveable grains by spawning barbel and salmon suggest they have similar geomorphic effects on sediments, although fine sediment tolerance is highly divergent.  相似文献   

2.
An integral part of population monitoring within fisheries is ground-based surveys of fish redds. Remotely piloted vehicles or drones (RPVs) could provide a complementary method but need verification due to a host of methodological differences. To compare methods, we counted summer Chinook redds (Oncorhynchus tshawytscha) (~6 m2 in size) using RPVs and compared them to ground-based counts in the Wenatchee River (WA, USA). We found individual aerial counts were many times twice the corresponding ground counts. We also found large inter-observer variability among aerial counters. The coefficient of variation among multiple aerial counts were 37%, 38%, and 50% across three sites, which are comparable to published variation in ground counts. We attribute inter-observer variability to inherent uncertainties in redd identification similar to ground counting, and importantly, we did not see evidence that the clarity of substrate in the image influenced observer bias. Overall, our data suggest that redd counting using RPVs is an effective method, particularly in high-density spawning locations. We conclude that RPV imagery accurately identifies redds in a clear, relatively wide (60 m) river, but suggest continuing research into increasing precision, limiting observer variability, and assessing the accuracy across methods and locations.  相似文献   

3.
Tributaries of tailwater fisheries in the southeastern USA have been used for spawning by stocked rainbow trout (Oncorhynchus mykiss), but their importance may have been underestimated using traditional fish survey methods such as electrofishing and redd counts. We used a bi‐genomic approach, mitochondrial DNA sequences and nuclear microsatellite loci, to estimate the number of spawning adults in one small tributary (Cabin Creek) of the Chattahoochee River, Georgia, where rainbow trout are known to spawn and have successful recruitment. We extracted and analysed DNA from seven mature male rainbow trout and four juveniles that were captured in February 2006 in Cabin Creek and from 24 young‐of‐year (YOY) trout that were captured in April 2006. From these samples, we estimated that 24 individuals were spawning to produce the amount of genetic variation observed in the juveniles and YOY, although none of the mature males we sampled were indicated as sires. Analysis of the mitochondrial D‐loop region identified four distinct haplotypes, suggesting that individuals representing four maternal lineages contributed to the offspring. Our analyses indicated that many more adults were spawning in this system than previously estimated with direct count methods and provided insight into rainbow trout spawning behavior. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Dam construction and reservoir formation represent profound anthropogenic alterations to natural riverscapes, especially in terms of connectivity in migratory fishes. The Peace River in northeastern British Columbia (BC), Canada, is the largest river system in BC, home to 39 native fishes and currently has two major hydroelectric projects, and a third one (‘Site C’) is proposed. Three co‐distributed and migratory fishes, the bull trout (Salvelinus confluentus), Arctic grayling (Thymallus arcticus) and the mountain whitefish (Prosopium williamsoni) are key species in the Peace River ecologically and in terms of recreational fisheries. We examined microsatellite DNA variation in these species to assess genetic diversity, levels of population subdivision and connectivity to better understand potential impacts and to provide baseline information for subsequent monitoring. Expected heterozygosity and number of alleles averaged 0.65 and 7.7, 0.73 and 11.9, and 0.72 and 10.8 for bull trout (nine loci), Arctic grayling (10 loci) and mountain whitefish (10 loci), respectively. Estimates of the effective number of breeders (Nb) ranged from 35 to 255 for bull trout to over 3700 for Arctic grayling. Population subdivision (FST, θ) was 0.040, 0.063 and 0.023 in bull trout, Arctic grayling and mountain whitefish, respectively (all p < 0.001). Temporal differences within localities for all species accounted for <1% of total variation in allele frequencies. An estimated 6.2% (mountain whitefish), 4.6% (bull trout) and 8.8% (Arctic grayling) of fish samples were inferred (p < 0.05) to be immigrants to one locality from another locality. Our results suggest that connectivity amongst localities is important to successful completion of the life history of each species, the potential disruption of which will be a critical aspect of post‐development monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
High‐resolution velocity measurements were taken over a series of redds on a gravel‐bed stream using a Pulse Coherent Acoustic Doppler Profiler (PCADP) to quantify the hydrodynamics of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) redds. On redds studied, over 4500 velocity measurements per redd were acquired per day to quantify the flow velocity, flow depth and related fluid mechanics metrics of Reynolds numbers, Froude numbers and turbulent kinetic energy per unit area. Results showed that velocity and Froude numbers varied widely at the redd scale, but consistently showed higher velocities and Froude numbers over the tailspill regions relative to the surrounding study limits. Results of Reynolds numbers calculations showed no apparent correlations to spawning location preference and redd structure. Turbulent kinetic energy per unit area consistently demonstrated a strong correlation with redd locations. The metric maintained low values (i.e. unidirectional flow with little turbulence) where all redds and attempted redds were observed. The study also demonstrates that a number of hydraulic metrics and several spatial scales will likely be necessary to understand any inherent relationship between river hydraulics and redd placement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Salmonid rivers in Austria are considerably regulated by small hydropower facilities, resulting in potential declines of the spawning habitats of salmonids. To assess the restrictions and possible quality of hydropower‐influenced river sections for salmonid, spawning redd densities of brown trout and rainbow trout were monitored in two rivers in 2014 and 2015. The results showed spawning close to small hydropower facilities for both investigated species — with similarities in redd characteristics like pit and tail length. Differences occurred concerning the distance of redd construction to the next shore. Brown trout spawn close to the banks in comparison to rainbow trout which use the entire active channel width. In addition to the preference of brown trout for certain cover types, it turned out that the presence of high quality spawning gravel in the river is the dictating abiotic variable (probably bottleneck) in the control of salmonid populations even for river reaches impacted by small hydropower plants. Moreover, the assessments of spawning redd densities enabled a discussion of different opportunities for spawning habitat enhancement of salmonids in river sections regulated by small hydropower facilities. Here, in conclusion, it was found that the fill‐up of the backwater sites by transported sediments or the structural modification (e.g. boulder placement) in the tail of the backwater could improve the spawning situation in a sustainable way. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Extensive hydroelectric development in the Columbia River system has eliminated most mainstem riverine habitat available for spawning by fall chinook salmon (Oncorhynchus tshawytscha). The two remaining populations, Hanford Reach, Columbia River and Hells Canyon Reach, Snake River, are separated geographically and their status is markedly different. Annual escapements to Hanford Reach have averaged approximately 80 000 adults, while the Snake River run size has declined to <1500 adults over the past 10 years. We compared their spawning habitat characteristics over a range of measurement scales, as a means to identify strategies for rebuilding the weak Snake River population. Physical habitat characteristics of redds were similar for both study areas. Redd locations were correlated with channel characteristics, such as braiding and sinuosity. Several differences between the two spawning areas were identified at the watershed scale: the Hells Canyon Reach had a much steeper longitudinal gradient, was largely confined by bedrock, and had a more variable flow regime. These features are controlling variables that operate at the reach‐scale to limit the availability and size of substrate and other conditions that influence egg deposition and incubation survival. Geomorphological characteristics of the two study sites are sufficiently different to indicate that the production potential of the Hells Canyon Reach population is markedly lower than that of the Hanford Reach population. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
In a restored, third‐order stream in northern Nova Scotia, Canada, we used redd counts over 12 years to examine the influence of beaver dams and the timing and intensity of autumn rains on spawning activity of Atlantic salmon. Most beaver dams in most years had no detectable effect on the distribution of spawning redds, but in 2004 the density of redds downstream from a three‐dam complex was significantly greater than that above, suggesting the dams were a barrier to many fish. A second complex of dams blocked salmon passage completely in 2003 and 2004 until they were notched to provide access upstream. The length of stream used by salmon for spawning was linearly correlated with total precipitation in the basin in October plus November (R2 = 0.60), to a ceiling of 325 mm, above which the fish had access to the entire brook, if beaver dams were notched. Number of redds in the whole brook was strongly correlated (R2 = 0.94) with the coefficient of variation (CV) of daily rainfall in October, but only for 7 of 11 years. This relationship disappeared when the impassable beaver dam complex failed in 2005, allowing salmon free access to 4 km of the upper brook. Variation in rainfall, and hence discharge, in this flashy brook evidently influences migration and spawning of Atlantic salmon in conjunction with channel blocking by beaver dams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Anadromous salmonid diversity and abundance worldwide have been adversely impacted by anthropogenic forces, and millions of dollars are spent each year on stream habitat restoration and enhancement. However, there is a paucity of data comparing site use by salmonids before and after enhancement implementation, and few studies examine the specific environmental conditions that determine whether salmonids utilize an enhanced site. This study examines the use of gravel augmentation to improve spawning site utilization by Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) on the Lower American River, California, USA. Spawning increased across all augmentation sites for both species, although there were species‐specific and year‐specific differences in the degree to which a site was utilized and in the spatial distribution of redds in relation to substrate size, habitat features and other redds. There were also differences in redd architecture across sites that were related to differences in gravel size. This study illustrates that gravel augmentation projects can enhance spawning habitat for salmonids where spawning beds have degraded but that species‐specific and site‐specific attributes and gravel size can influence the relative effectiveness of a project. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Reproductive success of stream‐spawning Oncorhynchus fishes (Pacific salmon, rainbow trout, cutthroat trout and their allies) may be greatly affected by stream discharge or its covariate, stream temperature, during the spawning season. Because such data for the physical environment may not have been routinely collected as part of previous investigations of these fishes, identification of simple but robust indices of historic, seasonal stream discharge and temperature, using long‐term climate data sets, would be important, especially to investigations of historic population dynamics. This study examined statistical associations among several climate variables and the spawning‐season (approximately June) discharges and temperatures of Clear Creek, a Yellowstone Lake tributary used by spawning Yellowstone cutthroat trout, Oncorhynchus clarkii bouvieri (YCT), from the lake. Correlation analysis showed that total water‐year degree‐days (calculated on the basis of mean daily air temperature > 0°C) at Lake Village, on the lake's north shore, was a robust index (both negative and positive, respectively) of consecutive, total semi‐month metrics of creek discharge and temperature during the YCT spawning season. This study (and subsequent use of the Lake Village degree days metric as an environmental variable in a dynamic, age‐structured model of the lacustrine–adfluvial YCT population of Clear Creek) showed how exploratory analyses of the fragmentary but long‐term and regionally unique data sets for Clear Creek discharge and temperature revealed a simple but robust index of climate variation important to understanding the historic dynamics of Clear Creek's YCT population, which is a key spawning stock of Yellowstone Lake. In addition, the extensive statistical associations among the climate variables, along with the temporal trends in two key variables, broadly showed how climate varied across the Yellowstone Lake region during the past several decades. Those observations have implications for the historic, seasonal hydrology of all Yellowstone Lake tributaries used by spawning YCT. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
There is a growing need to develop quantitative relationships between specific components of river flow and the behavioural responses of fishes. Given this, we tested for an effect of hydrologic parameters on axial swimming muscle electromyograms of bull trout (Salvelinus confluentus) in a large hydropeaking river (river discharge ranging from 0 to 1790 m3/s) while controlling for other exogenous factors such as temperature and light intensity. Hourly mean discharge had a significant positive effect (R2 = 0.13–0.31; depending on the distance from the dam) on swimming muscle activity. Within‐hour changes in river flow from 0 to 1045 m3/s did not elicit a hyperactive response in bull trout. When a subset of electromyogram transmitters were calibrated to swimming speed, we found there were periods, across a range of river discharges, when bull trout were not actively beating their tails—a behaviour documented in some bottom‐dwelling species associated with moving water. Not including these periods of rest, bull trout swam at median hourly speeds of 0.53 body lengths per second. Understanding fish behaviour in the context of their physical environment may help explain population‐level responses to hydrologic change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Potadromous salmonids that reside in hydropower reservoirs often have a high recreational and conservation value. However, the potential seasonal turbine entrainment vulnerability patterns of potadromous salmonids are not well understood. Here, we use acoustic telemetry to test the hypothesis that adults of two species of the Salvelinus genus (bull trout and lake trout) differ in their seasonal patterns of entrainment and entrainment vulnerability over a 2‐year period. Our results show that while both species were entrained at similarly low annual rates (~1%), these two salmonids differed in their patterns of forebay residency and proximity, with implications for entrainment risk. Bull trout occupied the forebay at low rates across all seasons, with no clear seasonal pattern of forebay proximity. In contrast, lake trout displayed a strongly seasonal pattern of entrainment vulnerability with a distinct movement away from the forebay during the summer, and a large increase in forebay proximity and use in the winter and spring. These findings provide a novel species‐specific demonstration of the potential entrainment vulnerability of lake trout. The seasonal patterns of entrainment vulnerability seen in previous bull trout studies, where bull trout occupied top pelagic predator niches, were not replicated in our study where bull trout occur in sympatry with another top pelagic predator. These findings, which indicate that species composition plays an important role determining entrainment vulnerability, have important implications for the conservation of indigenous lake trout and bull trout populations, and together highlight the need for a site‐specific approach to entrainment quantification.  相似文献   

13.
Restoration of a wild-produced lake trout Salvelinus namaycush population in Lake Ontario has not been successful despite the adult population often meeting or exceeding restoration targets. Lack of high-quality spawning habitat in Lake Ontario is suggested as one impediment to recruitment of wild lake trout, although the quantity and location of spawning habitat is poorly understood. If high-quality spawning habitat is limited in Lake Ontario, lake trout may be using uncommon spawning locations such as rivers. Anecdotal angler accounts point to the Niagara River as a lake trout spawning location. To better understand the potential of the Niagara River as a spawning location, egg and juvenile fish collections were conducted 12–14 river kilometers from the mouth of the Niagara River from 2010 to 2012; and mature female lake trout with surgically implanted acoustic tags were monitored from 2015 to 2019. Genetic analyses confirmed 60% of collected eggs and 93% of collected post-hatch juvenile fish in the Niagara River were lake trout. Tagged female lake trout returned to the Niagara River over consecutive years during the spawning season. The short duration of lake trout presence in the river (mean = 56 days/year) suggests female lake trout use the Niagara River primarily for spawning. Diversity in spawning locations may provide lake trout population’s resilience against environmental variability through a portfolio effect. Improved identification of riverine spawning locations, including their overall contribution to wild recruitment, may be a useful tool for managers to restore a wild-produced population of lake trout in Lake Ontario.  相似文献   

14.
Dams represent one of the major forms of river alteration. As these structures reach the end of their lifespan, they often require extensive refurbishments or removal. A small‐scale water supply dam in Banff National Park (Alberta, Canada) was partially removed, creating a breach that allowed water to scour a new passage resembling a nature‐like fishway. We investigated the permeability of the partially removed dam as a means of validating the conservation benefits of the partial dam removal. We quantified the proportion of bull trout (Salvelinus confluentus), a threatened species in Canada, that approached and passed the fishway using radio telemetry receiver stations. The proportion of bull trout that approached the fishway was low (37.0%; N = 27 of 73), but was consistent with upstream reference sites (33%; N = 20 of 60). For those that did approach, the proportion of bull trout that passed yielded a high passage efficiency (77.8%; N = 21 of 27 that approached). The probability that a fish passed the fishway was related to water depth and time of day. Bull trout were more likely to pass when water depths were high (>0.40 m), and at night. Passage duration ranged from 5‐mins to 13‐days, suggesting that this resident species used the fishway for a variety of purposes (e.g., station holding and foraging) and not just transiting. Some individuals underwent large‐scale movements 2‐km upstream (15.1%; N = 11 of 73), or 2‐km downstream (2.7%; N = 2 of 73) following a successful passage event. This study provides new insight on how, in some instances, a breach in a dam can function as a nature‐like fishway, accommodating year‐round stream flows and providing hydraulic conditions suitable for fish passage without costly engineering or construction.  相似文献   

15.
Gravel bed spawning grounds are essential for the reproduction of salmonids. Such spawning grounds have been severely degraded in many rivers of the world because of river regulation and erosive land use. To reduce its effects on salmonid reproduction rates, river managers have been restoring spawning grounds. However, measures of effectiveness are lacking for the restored spawning sites of brown trout (Salmo trutta). In this study, two methods were used to restore gravel bed spawning grounds in the Moosach River, a chalk stream in Southern Germany: the addition of gravel and the cleaning of colmated gravel. Seven test sites were monitored in the years 2004 to 2008, focussing on sediment conditions. Furthermore, brown trout egg survival and changes in the brown trout population structure were observed. Both gravel addition and gravel cleaning proved to be suitable for creating spawning grounds for brown trout. Brown trout reproduced successfully at all test sites. The relative number of young‐of‐the‐year brown trout increased clearly after the restoration. Sediment on the test sites colmated during the 4 years of the study. In the first 2 years, highly suitable conditions were maintained, with a potential egg survival of more than 50%. Afterwards, the sites offered moderate conditions, indicating an egg survival of less than 50%. Conditions unsuitable for reproduction were expected to be reached 5 to 6 years after restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
During the last 70 years, the Norwegian lake Mjøsa and its inflowing rivers have been subjected to serious changes due to hydroelectric power development. Regulation of the main inlet river, Gudbrandsdalslagen, started in 1919. The river power station at the Hunder fall was completed in 1964. This resulted in a reduction of winter water flow below the Hunder dam from approximately 26m3s?1 to 2m3s?1, which affected the most important spawning area of the fast-growing population of brown trout, Salmo trutta L. The population was investigated in detail in 1907, 1909, 1961, and 1985, and river growth, smolt age, and growth in Lake Mjøsa are compared. Only wild fish were included in the study. The main pattern throughout this period shows an increased river growth rate before smoltification and reduced smolt age. The average smolt age dropped from 4.7 years in 1909 to 4.1 years in 1985, and at the same time smolt size decreased from 26.8 cm to 25.1 cm. Considering the major changes in abiotic factors in the river spawning section, the changes in age structure and growth of brown trout smolt are comparatively small. In Lake Mjøsa, increased productivity due to input of nutrients has obviously favoured forage fish such as smelt (Osmerus eperlanus (L.)) and vendace (Coregonus albula (L.)). The growth rate of brown trout in the lake has improved from 1909 to 1961 and 1985, followed by a reduced spawning age. However, due to increased human exploitation the average length of ascending fish (approximately 68 cm) and condition factor ( K = 1.14–1.16) have altered little.  相似文献   

17.
The spawning migration and local homing of adult brown trout was analysed using radio telemetry in a regulated river in central Norway. Twenty‐eight large (37–64 cm) brown trout (Salmo trutta L.) were tracked before, during and after spawning in the River Nea, a watercourse with several obstructions, including an outlet tunnel from a power station and a regulated stretch (26 km) with 45 weirs. Two major patterns of spawning migration were found: (1) about half (n = 16; 57%) of the trout moved very little and remained in the deeper pools of the river from June until November; (2) about half (n = 12; 43%) of the trout migrated relatively long distances (12.5–28 km) up the river prior to the spawning period where they stayed in the outlets of small tributaries, or in rapids on the main river during the spawning period. We assume that these trout belong to a population of lake‐run migratory trout using the River Nea for spawning. There was no significant difference in body length of migratory and stationary brown trout and no significant difference in total distance moved by migratory males (30.5 km, n = 6) and females (20.5 km, n = 6, p > 0.05). Among migratory trout, we found no correlation between body length and migrated distance. Of the 12 migratory trout, nine undertook fast upward migration in periods of high water flow (> 100 m3/s). They passed the outlet tunnel from the power station and negotiated two to 35 weirs before reaching their main reproduction areas. Three trout crossed several weirs when the discharge was low (10–40 m3/s). When there was low discharge, fish remained at the outlet tunnel for up to four weeks and showed a high level of activity. Postspawning downstream migration started between 25 September and 25 October. Most migratory trout (n = 9) wintered in pools on the lower part of the river or in weir basins; only two trout descended to the lake (Selbusjøen) in late autumn. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population.  相似文献   

19.
This paper presents results from a novel technique allowing continuous monitoring through multiple storm events of interstitial flow in salmonid redds. Previous studies have shown that long‐term increases in fine sediment inputs into rivers can silt up spawning beds, reduce intergravel flow and threaten egg survival. Not enough is known, however, about the temporal and spatial scales of the physical processes affecting spawning habitat. The short‐term sensitivity of intergravel flow through salmon nests to low‐intensity sediment transport events has not been documented. Furthermore, it is unclear if the egg pocket flow vital to incubation is principally controlled by the hydraulic conductivity of the redd patch or by that, generally lower, of the ambient riffle substrate. The purpose of this study was to determine if individual runoff events could affect intergravel flow in salmon nests and to investigate the sensitivity of interstitial flow to the fines content and conductivity of the redd patch. During the summer and autumn of 2001, a new intergravel velocity sensor based on the hot wire principle made it possible to continuously monitor, over five months, interstitial velocities in artificial redds in four tributaries of the Cascapedia River, Quebec. Fifteen low and moderate intensity runoff events (up to 50% bankfull) were monitored. Data were obtained for each storm on suspended sediment transport as well as sand infiltration rates in sediment collectors emplaced in redd zones. It was found that redd interstitial velocities were reduced whenever a runoff event deposited more than 7 kg/m2 of sands in infiltration traps. In addition, redd interstitial velocities were reduced four out of the five times that the event‐integrated suspended sediment dose exceeded 7 mg l?1 day (dose is defined as the area under the concentration time curve). In the study conditions, where ambient riffle sediment has relatively moderate permeability and localized groundwater upwelling is negligible, our data suggest that significant intergravel flow (0.1–0.6 mm/s) can be triggered through 2 m long redd patches, in response to the redd‐scale water surface gradient and the relatively higher conductivity of the redd patch, after spawner activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号