首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer-ferrocene conjugates are synthesized from the polyamide1, poly-,-dl-[N-(3-(morpholin-4-yl)propyl)aspartamide-co-N-(2-aminoethyl)aspartamide, through coupling of amino side groups with the carboxyl function in a number of ferrocenylcarboxylic acids, including ferrocenoic acid, ferrocenylacetic acid, 3-ferrocenylpropanoic acid, 3-ferrocenylbutanoic acid, 4-ferrocenylbutanoic acid, and 4-ferrocenyl-4-hydroxypentanoic acid. The ferrocene complex has been chosen for conjugation by virtue of the cytotoxic properties observed with some of its derivatives. The coupling reactions, mediated by HBTU (O-benzotriazolyl-N,N,NN-tetramethyluronium hexafluorophosphate), are brought about inN,N-dimethylformamide solution and lead to degrees of substitution in the range of 25–95%. The resulting conjugates2, fractionated by dialysis in tubing with a 12,000–14,000 molecular mass cutoff and collected in the solid state by freeze-drying, are completely soluble in water after isolation and retain this property in frozen aqueous solutions. Preliminary electrochemical data are reported, indicating a decreasing (i.e., less positive) potential with increasing length of the aliphatic, electron-donating connecting link between the ferrocene and the carboxamide anchoring group. The 4-ferrocenylbutanoyl substituent is associated with the least positive potential of those structures investigated and, hence, should provide conjugates with optimalin vivo stability in the ferricenium state. Selected conjugates will be submitted to screening tests for antineoplastic activity.Metallocene polymers 46. For Part 45, see Ref. 1.  相似文献   

2.
BACKGROUND: The present work aimed to optimize a new economic medium for lipopeptide biosurfactant production by Bacillus subtilis SPB1 for application in the environmental field as an enhancer of diesel solubility. Statistical experimental designs and response surface methodology were employed to optimize the medium components. RESULTS: A central composite design was applied to increase the production yield and predict the optimal values of the selected factors. An optimal medium, for biosurfactant production of about 4.5 g L?1, was found to be composed of sesame peel flour (33 g L?1) and diluted tuna fish cooking residue (40%) with an inoculum size of 0.22. Increased inoculum size (final OD600) significantly improved the production yield. The emulsifier produced was demonstrated to be an alternative to chemically synthesized surfactants since it shows high solubilization efficiency towards diesel oil in comparison with SDS and Tween 80. CONCLUSION: Optimization studies led to a strong improvement in production yield. The emulsifier produced, owing its high solubilization capacity and its large tolerance to acidic and alkaline pH values and salinity, shows great potential for use in bioremediation processes to enhance the solubility of hydrophobic compounds. © 2012 Society of Chemical Industry  相似文献   

3.
In recent years, there has been an increasing interest in the development of plant-based nanoparticles due to their numerous benefits over conventional physio-chemical methods, including sustainability and environmental safety. Green synthesis, a process that produces safe and sustainable goods without the use of harsh chemicals or other harmful processes, is gaining popularity. The current study focuses on the green synthesis of copper oxide nanoparticles using Piper nigrum leaf extracts, their characterization, and applications. The synthesis of nanoparticles was confirmed by changes in colour, further endorsed by UV–visible spectroscopy. Copper oxide (CuO) nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). CuO nanoparticle sizes ranged between 58.23 and 69.89 nm and were spherical in shape. FTIR results indicated a functional group capped on the nanoparticle surface. The antibacterial activity of the copper oxide nanoparticles was tested, and they exhibited the significant decrease in bacterial concentration and the largest zone of inhibition, making them an efficient disinfectant. Antimicrobial activity against Bacillus subtilis and Escherichia coli was observed. Furthermore, the synthesized CuO nanoparticles exhibited a high affinity for safranin dyes and demonstrated maximum removal efficiency. This makes them an effective agent for removing dyes in wastewater from industries such as clothing manufacturing. Safranin dye was successfully removed with an efficiency of 78% using nanoparticles. In conclusion, the green synthesis of copper oxide nanoparticles using plant extracts presents an eco-friendly and sustainable approach for producing nanoparticles with a wide range of potential applications.  相似文献   

4.
In order to improve biological and mechanical properties of hydroxyapatite, the concept of hydroxyapatite-included nanocomposite coatings was introduced. By judiciously choosing constituent ceramics for composites preparation, the biological and mechanical performance of coatings can be tailored in order to meet various clinical requirements. The aim of this work was fabrication, development and characterization of novel hydroxyapatite-forsterite-bioactive glass nanocomposite coatings. The sol-gel technique was used to prepare hydroxyapatite-forsterite-bioactive glass nanocomposite in order to apply coating on 316L stainless steel (SS) by dip coating technique. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to investigate the phase structure, microstructure and morphology of the coating. In order to evaluate the forsterite incorporation influence upon bioactivity, the changes on the surfaces of the prepared composite coatings after the predicted days of contact with simulated body fluid (SBF) were investigated by SEM. Results showed that the suitable calcined temperature for nanocomposite coatings with different amounts of forsterite was 600 °C. At this temperature, the homogenous and crack-free coating could attach to the 316L SS substrate. The crystallite sizes of the prepared coatings were lower than 100 nm. The EDX analysis of hydroxyapatite-forsterite-bioglass, coated 316L SS surface, indicated consisting elements of prepared coatings and the substrate. During immersion in the SBF at pre-determined time intervals, apatite layer was formed and stimulation for apatite formation was increased with increase in forsterite amounts. It seems that hydroxyapatite-forsterite-bioactive glass nanocomposite coatings might be good candidates for biomedical applications.  相似文献   

5.

Introduction

Achievement of bioactive coatings on metallic implant surface with higher adhesive strength and corrosive resistance was one of the main challenges for the current biomaterial researchers. Hydroxyapatite was one of the promising bioactive ceramic which can be applied as a coating on the metallic substrate due to its similarity with the human bone.

Methods

The work describes the in-situ preparation of HAP/f-MWCNTs composite by sol-gel method. MWCNTs were functionalized by acid treatment. HAP composites have been prepared by varying the molar percentage of f-MWCNTs from 1% to 5%. The prepared composites with various concentrations of f-MWCNTs were characterized by FT-IR and XRD for its functional group analysis and phase purity. The morphology of the prepared powder was analyzed using SEM and TEM. In-vitro corrosive behavior on SBF was studied for the coating prepared HAP composite sol on 316L SS. The triple layer composite coating was obtained at the spin speed of 3000?rpm/min and subjected to sintering at 500?°C/2?h.

Results

X-ray diffraction results confirmed the formation of pure HAP up to the addition of 3% of f-MWCNTs without any secondary phases. The average crystallite size of the prepared particles was decreased from 40?±?2.1 to 17?±?2.5?nm with the addition f-MWCNTs. The morphological studies confirm the incorporation of f-MWCNTs in HAP matrix. The prepared HAP/f-MWCNTs composite efficiently inhibits the growth of the pathogens such as S. Aureus and E.coli. Improved hardness was observed with reinforcement of f-MWCNTs into the hydroxyapatite matrix. Electrochemical studies confirm the HAP/f-MWCNTs composites having increased corrosive resistance properties. The bonding strength of the composite coatings showed improved adhesion to the 316L surface.

Conclusion

In this work we have fabricated sol-gel derived anti-microbial composite coating on the 316L substrate by means of spin coating at optimized conditions with higher adhesive strength and improved corrosion resistance.  相似文献   

6.
7.
8.
Kojic acid (KA), an important compound with medical, cosmetic, and industrial applications, was loaded in 3-aminopropyltriethoxysilane-functionalized silica nanoparticle (MSNAPTES-KA5). This nanoparticle with acid was prepared to evaluate its application as a drug delivery system due to its interesting characteristic as large surface area, high pore volume, and good biocompatibility. The samples were characterized using different techniques that demonstrate success in the functionalization and loading process, as can be seen from the results obtained by FTIR, XPS, TGA, and CHN, that confirmed the presence of APTES and KA in the nanoparticles. KA drug loading was estimated using UV-Vis, TGA, and CHN, which revealed 12% loading of KA in the nanoparticles that showed slow rate of release. Antimicrobial assay was performed to evaluate the antimicrobial activity of the samples against different microorganisms. The results showed greater MSNAPTES-KA5 antibacterial activity than free-kojic acid for Candida albicans and Staphylococcus aureus. In relation to the acetylcholinesterase (AChE) inhibition assay; a higher inhibition of MSNAPTES-KA5, than the inhibition with free-kojic acid was observed. In addition, MSNAPTES-KA5 sample was also effective in inhibiting tyrosinase, proving the efficiency of the MSNAPTES base. These studies afford evidence of the possible beneficial biological activities of MSNAPTES-KA5 nanoparticle in pharmaceutical applications.  相似文献   

9.
《Ceramics International》2023,49(6):8801-8819
Machinable glass ceramics attracted much attention in recent years due to its improved mechanical and therapeutic performances. La2O3 doped SiO2–Al2O3–MgO–K2CO3–CaO–MgF2 glass and glass ceramics (GCs) were synthesized using melt-quenching and solid-state reaction methods. Herein, doping impact of La2O3 on physical, optical, morphological, mechanical, and biological properties were studied. XRD reveals the major phase formation of monoclinic cuspidine, Ca4F2Si2O7 with some minor phases. 3 mol% of La2O3 GCs shows a new major crystalline phase of akermanite, Ca2MgSi2O7. FTIR study shows that La2O3 acts as a network modifier and non-bridging oxygens presented in the glassy structure tends to be increased. Optical band gap and particle size were lies in the range of 4.18–4.10 eV, and 50–57 nm, respectively. Rod-like morphology and their elemental distributions were confirmed via SEM and EDS techniques. TEM studies suggested that the lattice planes agreed with the XRD results and confirmed a major phase formation of Ca2MgSi2O7. Enhanced mechanical properties were observed using Universal Testing Machine. The cell viability and cell cytotoxicity, were performed by MTT and ALP assay.  相似文献   

10.
《Ceramics International》2022,48(9):12625-12634
The objective of current research is to evaluate the bioactive and tribological properties of the MgO doped borophosphate glass system. The glass system constituted of 40% B2O3 - (20-x) % CaO – 25% Li2O – 15% P2O5 – x % MgO (mol%), x = 0, 0.5, 01, 02, 03 and synthesized using the melt quench technique. In-vitro bioactivity was determined using simulated body fluid (SBF) at 37 °C with time intervals of 7, 14 and 21 days. Hydroxyapatite (HA) layer formation was assessed using characterization techniques like XRD, FTIR and FESEM-EDS for structural, functional and morphological analysis respectively. The effect of MgO content on microhardness and tribological properties was studied by making cylindrical shaped glass samples. MTT assay was performed for various doses (62.5–1000 μg/ml) of glass dilutions using MG-63 cell line. In-vitro bioactivity showed higher Ca/P ratio with increase in MgO content after 21 days of immersion. MgO content seemed to promote degradation of glass due to formation of open structure in glass network. Borophosphate glass having 3% MgO exhibited the highest hardness value of 5.79(±0.08) GPa with minimum specific wear rate of 1.86 × 10?11 and 1.38 × 10?11 m3/Nm at a load of 15 N and 20 N respectively. MTT assay demonstrated the non-toxic behaviour of glass samples even at a higher dose level of 1000 μg/ml which confirmed its biocompatible behaviour. The study suggests that produced MgO doped borophosphate glass exhibits essential characteristics of bioactive materials and hence could be effective in bone filling and wound healing applications.  相似文献   

11.
以活性炭为载体,用溶胶-凝胶法制备了不同TiO2负载量的TiO2/AC复合光催化剂,运用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和红外光谱仪(FT-IR)对该催化剂进行表征.探讨了TiO2的负载量、光催化剂质量浓度、溶液的初始质量浓度等因素对孔雀石绿降解效率的影响,并对催化剂进行了回收再生实验.结果表明,TiO2负载量为30%时的复合催化剂为锐钛矿相,对孔雀石绿的降解具有良好的光催化活性,且回收7次重复使用降解效果仍在95%以上.  相似文献   

12.
冯文婕 《广州化工》2011,39(17):47-49
以雪莲果为原料,采用醇提法提取绿原酸,通过对不同乙醇质量分数、提取时间、提取温度、料液的提取效果进行比较分析,确定了最佳提取条件为:乙醇质量分数40%,提取时间2.5 h,提取温度80℃,料液比1∶20(g∶mL),绿原酸提取量为1.63mg/g。邻二氮菲-Fe2+法测定雪莲果提取物清除.OH(羟自由基)的能力,结果表明雪莲果中的绿原酸具有一定的抗氧化性。  相似文献   

13.
Presented research involved preparation of hydroxyapatite and synthesis of composites based on gelatin, albumin and polyvinylpyrrolidone (PVP) modified with the obtained compound. Hydroxyapatite was attained as a product of two-stage processing of pig bones. Applied procedure involved hydrolysis of the raw material in acidic environment and double calcination. Molar ratio Ca/P of hydroxyapatite has been determined and its chemical structure has been characterized using X-ray diffraction and FT-IR spectroscopy. Ratio Ca/P calculated on the basis of conducted research was 1.50?±?0.05. Thus prepared material met the ISO requirements, which assume that the Ca/P ratio should be in the range 1.5–2.0, which qualifies the material for further studies. Next, series of polymer matrix on the basis of gelatin, albumin and polyvinylpyrrolidone (PVP) has been synthesized and subjected to some analyzes. On the basis of the conducted studies, matrixes with the most favorable features such as desirable strength, flexibility and crosslinking degree were modified with previously prepared hydroxyapatite. Surface morphology and elemental composition of the composites have been analyzed using SEM-EDS method. Additionally, sorption capacity of modified composites and their behavior in simulated body fluids have been determined. Based on the conducted research it can be concluded that pig bones represent a good material for preparation of hydroxyapatite. Furthermore, composites based on proteins of natural origin modified with attained hydroxyapatite constitute a promising material that can be used for biomedical purposes.  相似文献   

14.
该研究以杭白菊为材料,以多酚提取率为评价指标,在SDS浓度、液固比、超声时间、超声温度单因素试验基础上,采用响应面法优化了杭白菊多酚提取工艺,并对杭白菊多酚成分进行了分析。同时测定了多酚对总还原力、DPPH自由基、OH自由基的清除能力。结果表明:杭白菊多酚提取最佳工艺条件为SDS溶液浓度1.50%、液固比为25mL/g、超声时间24min、超声温度65℃。在此条件下,多酚提取率预测值为12.591mg/g,实际为12.412mg/g,理论与预测值的相对误差为1.442%。杭白菊多酚的总还原力、清除OH自由基ED50值分别为9.00、148.862μL,强于VC(20.00、219.050μL)和BHT(415.00、487.46μL);清除DPPH自由基能力(ED50为8.201μL)弱于VC强于BHT(ED50为86.061μL)。应用高效液相色谱法分析其成分,结果显示:杭白菊多酚主要成分为异绿原酸A,含量为5.8704mg/g,其次为木犀草苷含量为3.1306mg/g, 绿原酸含量为3.1025mg/g。该提取工艺稳定合理,准确可靠,是提取杭白菊多酚的可行方法。该研究结果为杭白菊多酚成分的进一步开发利用奠定了基础。  相似文献   

15.
Electrochemically polymerized azines have been employed frequently as NADH electrocatalysts in biosensors and biofuel cells. However, some applications of these electrocatalysts do not lend themselves to electropolymerization. Therefore, this research investigates the chemical synthesis and application of poly(methylene blue) (PMB) and poly(methylene green) (PMG) in electrocatalysis. In an attempt to develop a simple synthesis for polymerized thiazines that could be immobilized on any surface, we investigated several polymerization protocols that are described in this paper. Structural analyses imply that the chemically synthesized polymers are chemically unique in comparison to the electropolymerized polymers. Amperometric investigations were used to compare the catalytic activity of chemically and electrochemically synthesized polymers as electrocatalysts for the oxidation of NADH and the chemically synthesized polymers were employed at the bioanode of a methanol/air biofuel cell to show their utility for this application.  相似文献   

16.
Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain’s biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.  相似文献   

17.
Porous structures consisting of a tetragonal three-dimensional mesh of interpenetrating coaxial tubes were fabricated by robocasting from hydroxyapatite (HA) inks. After sintering the structures, polycaprolactone (PCL) was infiltrated within the tubes core by injection of a polymer solution. The addition of the polymer enhanced the mechanical performance in terms of toughness over dense- and hollow-strut all-ceramic scaffolds, specially under bending stresses. PCL impregnation improved also the compressive strength over hollow-strut scaffolds —although dense-strut structures remained stronger especially in compression. Thus, this coaxial core-shell strut configuration combines the best features of each material: the necessary stiffness and excellent osteoconductivity of the bioceramic, with the high toughness and ductility of the biopolymer; and allows the fabrication of hybrid scaffolds with the interconnected macroporosity necessary for cell ingrowth. Hence, this work successfully provides a proof-of-concept of this novel strategy for the mechanical enhancement of bioceramic-based scaffolds while preserving their osteoconductive properties.  相似文献   

18.
以藤茶黄酮为原料,采用溶液燃烧法绿色制备纳米氧化锌(Nano ZnO)粉末,并利用FTIR、XRD、SEM和EDS对所得样品进行结构分析和形貌观察;使用布兰德-威廉姆斯法、透明抑菌圈法和最小抑菌浓度法考察了绿色合成Nano ZnO的抗氧化性能和抑菌性能。结果表明,以藤茶黄酮为生物模板制备的Nano ZnO粒子为六方晶系纤锌矿结构,结晶度良好,晶粒平均尺寸约为32.7nm;该纳米材料具有良好的抗氧化活性,2.5g/L的Nano ZnO溶液对1,1-二苯基-2-三硝基苯肼自由基(DPPH·)的清除率为98.24%;藤茶黄酮绿色合成Nano ZnO对金色葡萄球菌的抑菌活性高于传统化学合成的Nano ZnO。绿色合成Nano ZnO的最小抑菌浓度为1.00 g/L,而化学合成Nano ZnO的最小抑菌浓度为1.50 g/L。  相似文献   

19.
Cordyceps ophioglossoides is a valuable traditional medicinal material.We have found that intracellular polysaccharide(IPS) is the major biologically active ingredient in Cordyceps ophioglossoides.This study is the first time to optimize the yield of IPS from Cordyceps ophioglossoides.The optimal medium for IPS production consists of glucose 54.50 g·L·1,yeast powder 25.50 g·L·1,NaH2PO4 0.4 g·L·1 and K2HPO4 0.4 g·L·1.The suggested culture conditions are 24 ℃,initial pH 4.5 with a rotary speed of 120 r·min·1 for 168 h.The yield of IPS is 737.93 mg·L·1,which is 50% higher than the yield under the conditions prior to optimization.The anti-oxidative activities of IPS in Cordyceps ophioglossoides L2 are also characterized using various in vitro assay.The anti-oxidative activity may explain the reason why IPS from Cordyceps ophioglossoides can be used to fight against neurodegenerative dis-eases and menopausal symptoms.  相似文献   

20.
BACKGROUND: The study is focused on (i) screening and taxonomic identity of a bacterial strain for biosurfactant production, and (ii) evaluation of its potential for production of a biosurfactant using agro‐based feedstock(s) and characterization of it for application in the removal of heavy metals. RESULTS: The production of biosurfactant by an isolate Pseudomonas aeruginosa AB4 (identified on the basis of 16S rRNA analysis) using various cost‐effective substrates were examined at conditions 40 °C, 120 rpm for 7 days. It revealed maximum (40 gL?1) rhamnolipids production and 46% reduction of initial surface tension. Its optimum production was achieved at (i) C:N ratio 10:0.6, (ii) pH 8.5 and (iii) 40 °C. The cell–free supernatant examined for biosurfactant activity by (i) haemolytic assay, (ii) CTAB‐ methylene blue assay, (iii) drop collapse test, (iv) oil spreading technique and (v) EI 24 assay showed its glycolipid nature and stable emulsification. Analysis of partially purified rhamnolipids by (i) thin layer chromatography (TLC), (ii) high performance thin layer chromatography (HPTLC), (iii) high performance liquid chromatography (HPLC), (iv) Fourier transform infrared (FT‐IR) and (v) gas chromatography–mass spectrometry (GC‐MS) confirmed its structure as methyl ester of 3‐hydroxy decanoic acid (a glycolipid) with two major structural congeners (Rha‐C10‐C10 and Rha‐C10‐C8) of mono‐rhamnolipids. Finally, it showed sequestration of Cd and Pb, suggesting its application in biosurfactant‐assisted heavy metal bioremediation. CONCLUSION: This work has screened and identified a bacterium with superior biosurfactant production capabilities, characterized the glycolipidic biosurfactants as rhamnolipid and indicated the feasibility of biosurfactant production using novel renewable, relatively inexpensive and easily available resources such as non‐edible vegetable de‐oiled seed cakes and showed its utility in remediation of heavy metals. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号