首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anthropogenic influences, including climate change, are increasing river temperatures in northern and temperate regions and threatening the thermal habitats of native salmonids. When river temperatures exceed the tolerance levels of brook trout and Atlantic salmon, individuals exhibit behavioural thermoregulation by seeking out cold‐water refugia – often created by tributaries and groundwater discharge. Thermal infrared (TIR) imagery was used to map cold‐water anomalies along a 53 km reach of the Cains River, New Brunswick. Trout and salmon parr did not use all identified thermal anomalies as refugia during higher river temperature periods (>21°C). Most small‐bodied trout (8–30 cm) were observed in 80% of the thermal anomalies sampled. Large‐bodied trout (>35 cm) required a more specific set of physical habitat conditions for suitable refugia, that is, 100% of observed large trout used 30% of the anomalies sampled and required water depths >65 cm within or adjacent to the anomaly. Densities of trout were significantly higher within anomalies compared with areas of ambient river temperature. Salmon parr were less aligned with thermal anomalies at the observed temperatures, that is, 59% were found in 65% of the sampled anomalies; and densities were not significantly different within/ outside anomalies. Salmon parr appeared to aggregate at 27°C, and after several events over 27°C variability in aggregation behaviour was observed – some fish aggregated at 25°C, others did not. We stipulate this is due to variances of thermal fatigue. Habitat suitability curves were developed for velocity, temperature, depth, substrate, and deep water availability to characterize conditions preferred by fish during high‐temperature events. These findings are useful for managers as our climate warms, and can potentially be used as a tool to help conserve and enhance thermal refugia for brook trout and Atlantic salmon in similar systems.  相似文献   

2.
Temperature may influence interactions between species by regulating energy balances of individuals. We conducted a laboratory study to determine whether temperature influenced the effects exerted by large rainbow trout on the growth of Atlantic salmon parr. Bioenergetic models were used to predict maintenance rations so that food resources were limiting over a range of temperatures; equal biomasses of rainbow trout were substituted for Atlantic salmon to evaluate the relative effect of interspecific interactions on Atlantic salmon growth. In the presence of rainbow trout, salmon growth increased as temperatures increased from 15°C to 25°C; no such temperature effect occurred for salmon maintained alone. Growth differences between salmon maintained with and without trout were highly significant at 25°C but not at 15°C. We conclude that the presence of trout depressed salmon growth at 15°C but not at higher temperatures, most likely a result of differences in thermal optima between these two species. Field data show that the proportion of stocked Atlantic salmon to wild rainbow trout coexisting in natural streams is a function of mean summer temperature. As stream temperatures increased, Atlantic salmon became increasingly favored over rainbow trout, but with a concomitant decrease in total salmonine biomass. We suggest that Atlantic salmon restoration programs focus more attention on relatively warm streams in watersheds where interactions with naturalized rainbow trout may occur.  相似文献   

3.
Thermal refuges in rivers are becoming a critical habitat for ectotherm fish, including Atlantic salmon (Salmo salar). In this study, two statistical modelling approaches were used to estimate the areas of potential thermal refuges: generalized additive models (GAM) and multivariate adaptive regression splines (MARS). This allowed for the first development of a reliable statistical model that uses a few relevant predictors (air temperature, river discharge, main river, and tributary temperatures) to estimate tributary plume thermal refuge surface areas. GAM and MARS models were fitted independently for four sites on the Ste-Marguerite River, (Quebec, Canada). Model performances were evaluated using the leave-one-out cross validation (LOOCV) approach and the following criteria: the Akaike information criterion (AIC), root-mean-square error (RMSE), relative root-mean-square error (rRMSE), Nash-Sutcliffe efficiency coefficient (NASH), and finally the bias (BIAS). Using an array of thermographs deployed at the confluence of a cold tributary and the warmer main river stem, refuges were delineated at a daily time step. Model results indicate that the estimated areas are similar to the refuge surfaces interpolated using temperature measurements, with both models and for all sites. Results suggest that MARS performs better than GAM in terms of forecasting and estimating the variability of the area of thermal refuges at all study-stations. This relatively simple approach will be of use to water resources managers faced with the challenge of protecting thermal refuges for fish.  相似文献   

4.
To understand the temporal and spatial variability of thermal refuges, this study focused on modeling potential thermal refuge area (PTRA) at a sub-daily time-step in two tributary confluences of the Sainte-Marguerite River (Canada) during the summers of 2020 and 2021. Aquatic ectotherm species, such as Atlantic salmon (Salmo salar), seek these refuges to avoid heat stress during high summer river temperatures. To investigate the temporal variability of these PTRA, we employed inverse weighted distance interpolation to delineate the hourly area available at both confluences. We then analyzed the impact of the atypical low flow conditions of summer 2021 on the diel cycle of PTRA extremes using the coefficient of variation and the generalized additive model (GAM). Finally, we used four supervised machine-learning regression models and three to five hydrometeorological predictors to estimate hourly PTRA availability: multivariate adaptive splines regression (MARS), GAM, support vector machine regression (SVM), and random forest regression (RF). The results showed that tree-based and kernel-based regression models, RF and SVM, outperformed GAM and MARS. RF had the highest accuracy at both sites, with a relative root mean square error and Nash–Sutcliffe efficiency coefficient (Nash) of 13% and 93%, respectively. Our study discovered that under warm conditions in August 2021, small perennial tributary inflows in combination with low mainstem discharge could create high and constant PTRA at confluences, potentially providing vital thermal refuges for cold-water taxa. These refuges may be especially important at the local level, within a specific stretch or section of the river. Given the decreasing availability of thermal refuges for salmonids, it is crucial to monitor stream temperatures at small spatial and temporal scales using data-driven techniques in order to understand stream temperature heterogeneity at tributary confluences.  相似文献   

5.
As rivers warm, cold‐water fish species may alleviate thermal stress by moving into localized thermal refuges such as cold‐water plumes created by cool tributary inflows. We quantified use of two tributary confluence plumes by juvenile steelhead, Oncorhynchus mykiss, throughout the summer, including how trout positioned themselves in relation to temperature within confluence plumes. At two confluences, Cedar and Elder creeks, along the South Fork Eel River, California, USA, we monitored temperatures using in situ logger grids throughout summer 2016. Fish were counted within confluences via snorkel surveys five times a day on 5 days at each site. We found diel and seasonal dependence on confluence use by steelhead, especially at the Cedar Creek confluence, where mainstem temperatures exceeded 28°C. At this site, fish moved into the confluence on the warmest days and warmest times of the day. Fish observed within the Cedar Creek confluence plume were most common in locations between 20–22°C, rather than the coldest locations (14.5°C). At Elder Creek, where mainstem temperatures remained below 24°C, there was little relationship between mainstem temperature and steelhead presence in the confluence plume. At both sites, steelhead distribution within plumes was influenced by spatial variation of temperature and mean temperature in surveyed grid cells. Our results show that cool tributaries flowing into warmer mainstem reaches (over 24°C) likely create important thermal refuges for juvenile steelhead. As mainstem rivers warm with climate change, cool‐water tributary inputs may become more important for sustaining cold‐water salmonids near the southern end of their range.  相似文献   

6.
Habitat use and habitat selection by young Atlantic salmon and brown trout were investigated by direct underwater observation. We sampled during winter and summer water temperatures (low: 3–7°C; high: 9–12°C) coinciding with low and high waterflows (12–20 and 60–80 m3 s?1), and during day and night in winter, and on six selected stations in the river. Observations of 396 salmon and 120 trout indicated a distinct seasonal pattern in behaviours and habitat selection. Feeding was the dominant behaviour at high water temperatures during summer. In winter, there was a diurnal pattern in behaviour; both species sheltered in interstitial spaces in the substrate during daylight, but during night held positions on or close to the substrate in slower flowing stream areas. Coarse substrate providing cover was therefore an important habitat factor during daylight at low water temperatures, while slow‐flowing water was important during night. Although spatial niche overlap was considerable both in summer and winter, salmon and trout segregated with respect to meso‐ and microhabitat selection, and relatively more at low temperatures. Both species changed their use of mesohabitats towards more slow‐flowing glide/flat habitats in winter. Irrespective of season, trout preferred in general more slow‐flowing water than salmon did, but the difference was more pronounced in winter. Salmon used a wider range of water depths and in particular water velocities, than did trout. Both species were less tolerant of high water velocities at low water temperatures. The seasonal and diurnal pattern in habitat selection reported have important implications for habitat research and habitat‐hydraulic modelling. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In recent decades, there has been an increase in conservation and restoration projects targeting Atlantic salmon (Salmo salar – AS), as populations in eastern Canada decline. Missing however, is an understanding of thermo-hydraulic habitat use by adult AS during summer, and thus the actual benefits of altering in-river physical structures. Here, we illustrated how optical and thermal infrared (TIR) imagery acquired from a UAV can be used in concert with in-situ depth and velocity data to map adult AS and develop models of thermo-hydraulic habitats in the Miramichi River, New Brunswick. We found during normal temperature conditions (<19°C) boulder proximity, depth, velocity, and Froude number, a non-dimensional hydraulic metric, were key parameters that characterized adult AS habitat. However, during behavioural thermoregulation events (>19°C), proximity to the cool thermal plume and Froude number were critical controls on habitat use. We also observed AS forming a distinct geometric formation during behavioural thermoregulation events, and term this formation a “thermal-peloton”; in reference to competitive cycling in which groups of cyclists pack together. The primary function of the peloton is undoubtedly to reduce thermally induced stressed; however, we conceptualize that the geometry of the peloton attenuates hydraulic-drag, and reduces the energetic expenditure of individuals practicing behavioural thermoregulation. These data provide a blue print for Atlantic salmon restoration work. The use of UAV-based sensors has the potential to initiate a paradigm shift for river sciences.  相似文献   

8.
During the summer in the main‐stem Klamath River, juvenile salmonids respond positively to cooler tributary temperatures by congregating in large schools at the mouths of these tributaries, referred to as thermal refugia. The purpose of this paper is to summarize results from coho salmon (Oncorhynchus kisutch) thermal refugia studies conducted since 2006 in the Klamath River. Results showed that juvenile coho salmon started using thermal refugia when the Klamath River main‐stem temperature approached approximately 19 °C. The majority of the juvenile coho salmon within the studied thermal refugia were found in the slower velocity habitat associated with cover. Juvenile coho salmon counts in the studied thermal refugia dramatically decreased at temperatures >22–23 °C, suggesting that this approximates their upper thermal tolerance level. Although some juvenile coho salmon were very mobile, others chose, until smoltification, to rear in the mouths and lower reaches of non‐natal tributaries where thermal refugia occurred, apparently because of suitable habitat conditions. Information gained from these investigations will improve our knowledge of the life history of coho salmon in the Klamath River drainage and how they use the main‐stem river. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Beaver Creek confluence with the main‐stem Klamath River was studied to assess salmonid use in a thermal mixing zone under various summer hydrological and meteorological conditions. Main‐stem flow releases from Iron Gate Dam ranged from 17 cms (615 cfs) to 37 cms (1320 cfs) during the study period and main‐stem water temperatures ranged from 19.5 to 26°C. A grid was constructed to define the thermal refuge as a system of cells. Temperatures were monitored using remote temperature loggers and fish counts were conducted using daytime snorkelling. Most juvenile salmonids were observed moving into the refuge when main‐stem temperatures exceeded 22–23°C. Salmonids in the thermal refuge did not necessarily seek the coolest water, but were generally located in habitats commensurate with species‐specific behavioural needs within their thermal tolerance range. Such ranges largely occurred within refuge areas. Variable meteorological conditions confounded observable biological thermal benefit to fish resulting from higher or lower main‐stem flows. Thermal regime dynamics indicated that under the hydrological and meteorological conditions observed, higher flows from Iron Gate Dam showed some ability to change the structure of the refuge area. It appeared that without the thermal refuge, main‐stem flows alone could not sustain the salmonid population because high water temperatures usually exceeded their published thermal tolerance limits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We collected fish samples and measured physical habitat characteristics, including summer stream temperatures, at 156 sites in 50 tributary streams in two sampling areas (Upper Fraser and Thompson Rivers) in British Columbia, Canada. Additional watershed characteristics were derived from GIS coverages of watershed, hydrological and climatic variables. Maximum weekly average temperature (MWAT), computed as an index of summer thermal regime, ranged from 10 to 23 °C. High values of MWAT were associated with large, warm, low relief watersheds with a high lake influence. Measures of community similarity suggested that the fish community changed most rapidly through a lower transition zone at an MWAT of about 12 °C and an upper transition zone at an MWAT of about 19 °C. These results were confirmed using existing fisheries inventory data combined with predictions of MWAT from a landscape‐scale regression model for the Thompson River watershed. For headwater sites in the Chilcotin River watershed (which drains into the middle Fraser River), the relative dominance of bull trout versus rainbow trout (based on inventory data) decreased with increasing predicted MWAT although the distinction was not as clear as for the Thompson River sites. The fish communities in these watersheds can be characterized in terms of very cold water (bull trout and some cold water species), cold water (salmonids and sculpins) and cool water (minnows and some cold water salmonids). The two transition zones (ca 12 and 19 °C) can be used to identify thresholds where small changes in stream temperature can be expected to lead to large changes in fish communities. Such clear, quantifiable thresholds are critical components of a management strategy designed to identify and protect vulnerable fish communities in streams where poor land use practices, alone or in combination with climatic change, can lead to changes in stream temperatures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
During 1980–82 the movements, seasonal locations, and habitat preferences of brown trout in southcentral Lake Ontario were examined using radio telemetry and vertical gill nets. In fall and spring 85% of the 28 brown trout tracked by radio moved east from tagging sites. Movements frequently centered around original stocking sites, streams, and power plant outflows. Fish moved farther in spring (4.4 ± 2.5 km/d) than in fall (2.4 ± 1.7 km/d) seasons, but short-term movement rates did not differ between seasons (0.4 ±0.1 km/h in spring vs. 0.4 ± 0.3 km/h in fall). Females moved farther and faster than males in the fall. Brown trout generally occupied shallow waters < 1 km from shore; 81% of temperatures occupied by trout were between 8–18°C in spring (10.6 ± 2.3°C) and fall (10.1 ± 3.9°C), but turbidity appeared to influence presence or absence of trout near shore on a daily basis. In summer 78% of the 75 brown trout netted were in 8–18° C water (12.6 ± 4.0°C); 88% were caught in or within ±3 m of the thermocline region. Brown trout occupied regions near the thermocline despite widely varying bottom depths and thermocline temperatures. All brown trout were netted within 3.2 km of shore in summer, most in water ≤ 30 m deep; 70% were caught more than 3 m off bottom. The strong association of brown trout with nearshore and thermocline regions may distinguish their distributions from other salmonid species in Lake Ontario.  相似文献   

12.
To examine movements of rainbow/steelhead trout (Salmo gairdneri) and associated environmental influences, 28 fish were radiotagged in and near a tributary of Lake Ontario during spring spawning runs in 1981 and 1982. Trout initially entering the lake from the tributary generally exhibited east-west reversals of movement along the southern shore of Lake Ontario before dispersing off shore. Seasonal movement rates averaged 3.2 ± 1.6km/d over periods of 6–94 d; mean short term rates were 0.50 ± 0.46 km/h. Temperatures occupied in the lake were 9.1 ± 1.5°C; temperatures at which fish were last observed were 9.8 ± 3.8° C. Movements offshore and ultimate disappearances occurred from April to July, but were most pronounced when temperatures near shore exceeded 10° C. By linking trout movements to seasonal thermal structure in Lake Ontario, a testable hypothesis was established to explain the distribution of rainbow trout in spring and early summer. Based on tracking data, information provided by south shore anglers, and literature on the physical limnology of Lake Ontario, we hypothesize that rainbow trout disperse off shore in spring with thermal fronts, particularly the 6–8° C zone known as the spring thermocline.  相似文献   

13.
Knowledge of population-level relationships and how these relationships pertain to different life history forms is critical to developing effective management plans for native trout, char, and salmon. In the Lake Superior basin, identifying effective restoration strategies for coaster brook trout (Salvelinus fontinalis), a lake-inhabiting form of brook trout, is hampered by limited information on genetic connectivity and source-sink dynamics among brook trout populations. Here, we infer these relationships by surveying 8,178 single nucleotide polymorphisms in 234 brook trout from seven rivers along the Minnesota shoreline with Lake Superior, including from reaches above and below natural waterfalls that prevent upstream movement. We identified well-differentiated above-barrier populations that supply brook trout to below-barrier reaches. We also compared within-river brook trout to 26 coaster brook trout from Lake Superior. We identified at least four source populations for these coaster brook trout, three of which were located within rivers. Additionally, we estimated NE for within-river populations and detected a decline across recent generations, with the most recent estimates approaching critical thresholds. Finally, comparisons with 94 domestic brook trout representing nine hatchery strains revealed a lack of domestic introgression into wild populations, demonstrating the importance of natural reproduction to population persistence. Our results offer novel insights into sources of coaster brook trout and highlight the role of within-river populations in supporting the coaster life history. Management efforts focused on instream restoration may be more important to rehabilitating coaster brook trout than previously thought and are urgently needed given the population-level conservation status reported here.  相似文献   

14.
In a restored, third‐order stream in northern Nova Scotia, Canada, we used redd counts over 12 years to examine the influence of beaver dams and the timing and intensity of autumn rains on spawning activity of Atlantic salmon. Most beaver dams in most years had no detectable effect on the distribution of spawning redds, but in 2004 the density of redds downstream from a three‐dam complex was significantly greater than that above, suggesting the dams were a barrier to many fish. A second complex of dams blocked salmon passage completely in 2003 and 2004 until they were notched to provide access upstream. The length of stream used by salmon for spawning was linearly correlated with total precipitation in the basin in October plus November (R2 = 0.60), to a ceiling of 325 mm, above which the fish had access to the entire brook, if beaver dams were notched. Number of redds in the whole brook was strongly correlated (R2 = 0.94) with the coefficient of variation (CV) of daily rainfall in October, but only for 7 of 11 years. This relationship disappeared when the impassable beaver dam complex failed in 2005, allowing salmon free access to 4 km of the upper brook. Variation in rainfall, and hence discharge, in this flashy brook evidently influences migration and spawning of Atlantic salmon in conjunction with channel blocking by beaver dams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Large-scale reintroduction programs for landlocked Atlantic salmon Salmo salar are ongoing in Lakes Ontario and Champlain. Commonly, these programs involve stocking hatchery reared juveniles into streams and thus, quantifying the in situ habitat use of stocked fish can help support these efforts. To examine habitat use, we stocked young-of-the-year (YOY) Atlantic salmon into 14 reaches of the Boquet River in the Lake Champlain Basin. The habitat used by YOY Atlantic salmon, measured from microhabitats that were used versus not used, differed between early and late summer for water depth. In early summer, YOY Atlantic salmon used a more narrow range of habitats compared to late summer. However, in both early and late summer, YOY most often used intermediate values in habitat variables except for water velocity in early summer. In early summer, YOY Atlantic salmon had the highest probability of using a water depth of 26 cm, a water velocity of 1 cm/sec, and a pebble substrate. In late summer, the probability of use was highest at a water depth of 61 cm, a water velocity of 11 cm/sec, and a pebble substrate. Our results show that stocked landlocked YOY Atlantic salmon use similar habitats to anadromous populations and may help managers when determining stocking locations or habitat alterations.  相似文献   

16.
After a long absence, beaver Castor fiber are rapidly returning to Europe. Their dam‐building and tree‐felling behaviour may have consequences for salmon Salmo salar and sea trout Salmo trutta management. In 2003 we investigated the parallel use of stream sections by beaver, sea trout and salmon and determined the potential hindrance that beaver dam‐building presented for reproducing salmon and sea trout along 65 km of the Numedalslågen River and tributaries, a major Norwegian catchment. We also surveyed landowner attitude to having beaver on salmon and sea trout streams. Most salmon spawned in the river and most sea trout in 51 tributaries. Nine of these tributaries also hosted spawning salmon. 15 (29%) of the 51 tributaries with spawning sea trout and six (67%) of the nine with spawning salmon had intermittently been occupied by beaver. Though beaver preferred to colonize the same sections of stream used for spawning, only 15% of the stream length navigable by salmon and sea trout on the 51 tributaries had actually been used by beaver, and only three colonies were occupied autumn 2003 (1 colony/25.0 km). Five dams were functioning during autumn 2003 on the 51 tributaries (1 dam/14.3 km). These potentially hindered sea trout and salmon from reaching 18% and 3%, respectively of their potential spawning habitat, though all dams were low (≤0.5 m). Though the autumn density of occupied beaver colonies along the river (1 colony/2.5 km) was 10.0 times the density on the 51 tributaries, no dams were built on the river. Thus most salmon reproduction in the catchment was unhindered by beaver. Nine of 14 landowners were unequivocally positive about having beaver together with salmon and sea trout. We conclude that the presence of beaver on similar catchments will likely have only an insignificant negative impact on the reproduction of sea trout and salmon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Brown trout (Salmo trutta) were surveyed by mark recapture in a 200‐m section of Gilmore Creek, Minnesota, annually during fall 1989–2013 to assess long‐term trends in abundance. Young‐of‐year (YOY) fish comprised >68% of the population annually, but age 3 and older fish were present in 23 of 25 years. Trout abundance varied irregularly, peaking every 4 to 6 years. Fall densities of YOY brown trout were positively correlated with median annual stream discharge but inversely correlated with 10% exceedance discharge in May, at a nearby gaged stream. Changes in brown trout abundances were synchronized with those of trout in 2 nearby streams. Annual mortality rates (mean = 74%) and sizes of YOY trout were correlated with YOY densities, with high densities (>1.0 fish/m2) producing small size during fall and high cohort mortality. High YOY densities resulted in low proportional size structure‐quality (PSSQ, <20%) 1 and 2 years later. If similar brown trout population dynamics occur in other streams within the region, interpretation of short‐term studies of brown trout (e.g., regulation evaluations, creel surveys, population response to habitat improvement, seasonal movements, and growth rates) may be confounded.  相似文献   

18.
Two morphologically distinct moss communities were found in the River Suldalslågen. The liver moss community consists of species which form a dense mat on the bottom, while the river moss (Fontinalis) community forms long tufts. Moss growth has increased since hydropower regulations due to reduced floods and increased winter flows. Increased moss cover affects the bottom structure, as well as intra‐gravel and near‐bottom hydraulics. We studied densities of juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) by electrofishing and habitat selection by direct underwater observation, in areas with natural moss cover compared with areas where mosses were experimentally removed. Areas with dense mats of liver mosses held lower densities of young of year (YoY) and older salmon parr than areas where liver moss had been removed. No differences in densities of YoY salmon were found between areas with and without Fontinalis. For older salmon, parr results were inconclusive. In some samples more and in others fewer fish were found in areas with Fontinalis moss removed. For trout, densities were higher in areas with Fontinalis, while results for liver moss were inconclusive. No major differences were found with regard to microhabitat selection between areas with and without river moss, suggesting that habitat quality in these areas was similar during summer, except with respect to substrate. Salmon held more exposed positions in areas without liver moss, but this is mainly attributed to different habitat availabilities. It is concluded that the relative increase in liver mosses in the River Suldalslågen has a negative impact on juvenile Atlantic salmon fish density. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Many studies have investigated the ecological changes that occur below dams that release cold, hypolimnetic water, but very few studies have looked at the effects of the release of warm, surface waters. The effect of small, surface release dams on downstream thermal regimes is a major habitat concern for many cold‐water systems, however. The objective of this study was to examine the effects of summer temperature increases due to impoundment on downstream fish and macroinvertebrate communities in cold‐water streams. We sampled fish, macroinvertebrates and habitat upstream and downstream of dams on ten rivers during the summers of 1998 and 1999. Changes in mean summer temperature downstream varied from a cooling of 1 °C to an increase of more than 5 °C. Increasing temperatures downstream coincided with lower densities of several cold‐water fish species, specifically brown trout (Salmo trutta), brook trout (Salvelinus fontinalis) and slimy sculpin (Cottus cognatus) while overall fish species richness increased downstream. Density of mottled sculpin (Cottus bairdi), another cold‐water species, was not related to temperature changes below the dams. Macroinvertebrates showed shifts in community composition below dams that increased temperature. This study provides information useful for determining the extent of impact of these small, surface release dams, which are abundant across the country. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
In order to test the effect of regulated water temperature on the development of eggs and alevins of three salmonid species, deep and surface water from an oligotrophic lake was pumped into a hatchery. Atlantic salmon (Salmo salar) clearly needed the highest number of degree-days to reach the different developmental stages while brown trout (Salmo trutta) needed just a little more than the brook trout (Salvelinus fontinalis). Eggs and alevins developed in the surface water, which was colder in winter, needed a lower number of degree-days to reach the hatch and swim-up stages. In spite of this there was a considerable difference in time for hatching and start of feeding of fish in the two temperature regimes. This might have consequences for the reproduction success and competition between species in regulated rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号