首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 现有的深度图像去噪算法在去除加性高斯噪声上效果显著,但在去除任意分布的真实图像噪声时表现不佳;去噪模型的深度在不断增加,但去噪效果上却并未能显著提高。对此,设计了一种简单有效的两阶段深度图像去噪算法。方法 首先基于注意力机制估计真实图像上的噪声分布水平,然后使用一个混合膨胀卷积和普通卷积的多尺度去噪模块进行非盲降噪。结果 在DND(darmstadt noise dataset)、SIDD(smartphone image denoising dataset)、Nam和PolyU(the Hong Kong Polytechnic University)等4个图像去噪领域常用数据集上进行去噪实验,选择峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structual similarity,SSIM)作为去噪效果的评价指标,得到的平均PSNR值分别为39.23 dB,38.54 dB,40.45 dB,37.34 dB,并与几种传统去噪方法和基于深度学习的去噪方法进行比较。实验结果表明,本文的去噪算法在去噪效果和视觉质量上有明显提升。同时,在SIDD数据集上进行消融实验以验证算法中模块的有效性。结论 本文算法使用的跳跃连接、噪声水平估计以及多尺度模块均可以有效提升真实图像去噪效果。与现有方法相比,本文算法不仅能有效去除真实图像噪声,而且能通过简单的模块参数设置控制去噪网络的计算效率。  相似文献   

2.
目的 随着深度卷积神经网络的兴起,图像超分重建算法在精度与速度方面均取得长足进展。然而,目前多数超分重建方法需要较深的网络才能取得良好性能,不仅训练难度大,而且到网络末端浅层特征信息容易丢失,难以充分捕获对超分重建起关键作用的高频细节信息。为此,本文融合多尺度特征充分挖掘超分重建所需的高频细节信息,提出了一种全局注意力门控残差记忆网络。方法 在网络前端特征提取部分,利用单层卷积提取浅层特征信息。在网络主体非线性映射部分,级联一组递归的残差记忆模块,每个模块融合多个递归的多尺度残差单元和一个全局注意力门控模块来输出具备多层级信息的特征表征。在网络末端,并联多尺度特征并通过像素重组机制实现高质量的图像放大。结果 本文分别在图像超分重建的5个基准测试数据集(Set5、Set14、B100、Urban100和Manga109)上进行评估,在评估指标峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上相比当前先进的网络模型均获得更优性能,尤其在Manga109测试数据集上本文算法取得的PSNR结果达到39.19 dB,相比当前先进的轻量型算法AWSRN(adaptive weighted super-resolution network)提高0.32 dB。结论 本文网络模型在对低分图像进行超分重建时,能够联合学习网络多层级、多尺度特征,充分挖掘图像高频信息,获得高质量的重建结果。  相似文献   

3.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

4.
目的 图像超分辨率重建的目的是将低分辨率图像复原出具有更丰富细节信息的高分辨率图像。近年来,基于Transformer的深度神经网络在图像超分辨率重建领域取得了令人瞩目的性能,然而,这些网络往往参数量巨大、计算成本较高。针对该问题,设计了一种轻量级图像超分辨率重建网络。方法 提出了一种轻量级图像超分辨率的蓝图可分离卷积Transformer网络(blueprint separable convolution Transformer network,BSTN)。基于蓝图可分离卷积(blueprint separable convolution,BSConv)设计了蓝图前馈神经网络和蓝图多头自注意力模块。然后设计了移动通道注意力模块(shift channel attention block,SCAB)对通道重点信息进行加强,包括移动卷积、对比度感知通道注意力和蓝图前馈神经网络。最后设计了蓝图多头自注意力模块(blueprint multi-head self-attention block,BMSAB),通过蓝图多头自注意力与蓝图前馈神经网络以较低的计算量实现了自注意力过程。结果 本文方法在4个数据集上与10种先进的轻量级超分辨率方法进行比较。客观上,本文方法在不同数据集上取得了不同程度的领先,并且参数量和浮点运算量都处于较低水平。当放大倍数分别为2、3和4时,在Set5数据集上相比SOTA(state-of-theart)方法,峰值信噪比(peak signal to noise ratio,PSNR)分别提升了0.11dB、0.16dB和0.17dB。主观上,本文方法重建图像清晰,模糊区域小,具有丰富的细节。结论 本文所提出的蓝图可分离卷积Transformer网络BSTN以较少的参数量和浮点运算量达到了先进水平,能获得高质量的超分辨率重建结果。  相似文献   

5.
为解决现有人脸图像修复算法因无法提取动态特征和缺乏边缘先验信息导致修复大区域不规则破损时纹理模糊和结构扭曲问题,提出了基于边缘先验融合动态门控特征的人脸图像修复算法。首先,设计动态门控卷积模块动态提取破损区域特征,关联已知区域和缺失区域的有效特征,提升纹理细腻度;然后,设计动态门控边缘增强网络和U型编码纹理修复网络,边缘增加网络旨在获取边缘轮廓信息,为U型编码纹理修复网络提供结构先验约束;U型编码纹理修复网络采用UNet++网络融合多层特征以保证人脸修复图像结构和纹理一致性;最后,通过消融实验证明UNet++网络的有效性和通用性,并剪枝U型网络以选取适宜的人脸图像模型表征层进行缺失区域纹理重建,在CelebA-HQ人脸数据集上进行实验评估。实验结果表明:相较于主流算法,所提方法在SSIM上平均提升3.87%,PSNR平均提升3.79 dB,FID平均下降16.54%,能有效修复大区域不规则缺失面积,生成纹理清晰、结构合理的图像。  相似文献   

6.
目的 图像修复是根据图像中已知内容来自动恢复丢失内容的过程。目前基于深度学习的图像修复模型在自然图像和人脸图像修复上取得了一定效果,但是鲜有对文本图像修复的研究,其中保证结构连贯和纹理一致的方法也没有关注文字本身的修复。针对这一问题,提出了一种结构先验指导的文本图像修复模型。方法 首先以Transformer为基础,构建一个结构先验重建网络,捕捉全局依赖关系重建文本骨架和边缘结构先验图像,然后提出一种新的静态到动态残差模块(static-to-dynamic residual block,StDRB),将静态特征转换到动态文本图像序列特征,并将其融合到编码器—解码器结构的修复网络中,在结构先验指导和梯度先验损失等联合损失的监督下,使修复后的文本笔划连贯,内容真实自然,达到有利于下游文本检测和识别任务的目的。结果 实验在藏文和英文两种语言的合成数据集上,与4种图像修复模型进行了比较。结果表明,本文模型在主观视觉感受上达到了较好的效果,在藏文和英文数据集上的峰值信噪比和结构相似度分别达到了42.31 dB,98.10%和39.23 dB,98.55%,使用Tesseract OCR (optical character recognition)识别修复后藏文图像中的文字的准确率达到了62.83%,使用Tesseract OCR、CRNN (convolutional recurrent neural network)以及ASTER (attentional scene text recognizer)识别修复后英文图像中的文字的准确率分别达到了85.13%,86.04%和76.71%,均优于对比模型。结论 本文提出的文本图像修复模型借鉴了图像修复方法的思想,利用文本图像中文字本身的特性,取得了更加准确的文本图像修复结果。  相似文献   

7.
针对图像去噪网络中下采样导致高频信息损失和细节保留能力差的问题,设计了一种级联离散小波多频带分解注意力图像去噪网络。其中多尺度级联离散小波变换结构将原始图像分解为多个尺度下的高低频子带来代替传统下采样,能减少高频信息损失。多频带特征增强模块使用不同尺度的卷积核并行处理高低频特征,在子网络每一级下重复使用两次,可增强全局和局部的关键特征信息。多频带分解注意力模块通过注意力评估纹理细节成分的重要性并加权不同频带的细节特征,有助于多频带特征增强模块更好地区分噪声和边缘细节。多频带选择特征融合模块融合多尺度多频带特征增强选择性特征,提高模型对于不同尺度噪声的去除能力。在SIDD和DND数据集上,所提方法的PSNR/SSIM指标分别达到了39.35 dB/0.918、39.72 dB/0.955。实验结果表明,所提方法的性能优于主流去噪方法,同时具有更清晰的纹理细节和边缘等视觉效果。  相似文献   

8.
针对现有的图像修复算法重建结果存在的局部结构不连通、细节还原不准确等问题,提出了一种基于语义先验和双通道特征提取的图像修复算法(semantic prior and dual channel extraction,SPDCE)。该算法利用语义先验网络学习缺失区域的语义信息和上下文知识,对缺失区域进行预测,增强了生成图像的局部一致性;然后通过双通道特征提取网络充分挖掘图像信息,提升了对纹理细节的感知和利用能力;再使用上下文特征调整模块在多个尺度上捕获并编码丰富的语义特征,从而生成更真实的图像视图和更精细的纹理细节。在CelebA-HQ和Places2数据集上进行实验验证,结果表明,SPDCE算法与常用算法相比,峰值信号比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)分别提升1.6~1.73 dB和3.1%~9.9%,L1 loss下降15.2%~27.8%。实验证明所提算法修复后的图像具有更合理的结构和更丰富的细节,图像修复效果更优。  相似文献   

9.
当前流行的基于深度神经网络的图像修复方法,通常使用大感受野的特征提取器,在修复局部图案和纹理时,会产生伪影或扭曲的纹理,从而无法恢复图像的整体语义和视觉结构。为了解决这个问题,提出了一种基于优化感受野策略的图像修复方法(optimized receptive field,ORFNet),将粗糙修复与精细修复相结合。首先,使用具有大感受野的生成对抗网络获得初始的粗略修复结果;然后,使用具有小感受野的模型来细化局部纹理细节;最后,使用基于注意力机制的编码器-解码器网络进行全局精炼修复。在CelebA、Paris StreetView和Places2数据集上进行验证,结果表明,ORFNet与现有具有代表性的修复方法进行对比,PSNR和SSIM分别平均提升1.98 dB和2.49%,LPIPS平均下降2.4%。实验证明,所提图像修复方法在不同感受野的引导下,在修复指标上表现更好,在视觉上也更加真实自然,验证了该修复方法有效性。  相似文献   

10.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

11.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

12.
目的 卷积神经网络(convolutional neural network,CNN)和自注意力(self-attention,SA)在多媒体应用领域已经取得了巨大的成功。然而,鲜有研究人员能够在图像修复任务中有效地协调这两种架构。针对这两种架构各自的优缺点,提出了一种关联学习的方式以综合利用两种方法的优点并抑制各自的不足,实现高质高效的图像修复。方法 本文结合CNN和SA两种架构的优势,尤其是在特定的局部上下文和全局结构表示中充分利用CNN的局部感知和平移不变性,以及SA的全局聚合能力。此外,图像的降质分布揭示了图像空间中退化的位置和程度。受此启发,本文在背景修复中引入退化先验,并据此提出一种动态关联学习的图像修复方法。核心是一个新的多输入注意力模块,将降质扰动的消除和背景修复关联起来。通过结合深度可分离卷积,利用CNN和SA两种架构的优势实现高效率和高质量图像修复。结果 在Test1200数据集中进行了消融实验以验证算法各个部分的有效性,实验结果证明CNN和SA的融合可以有效提升模型的表达能力;同时,降质扰动的消除和背景修复关联学习可以有效提升整体的修复效果。本文方法在3个图像修复任务的合成和真实数据上与其他10余种方法进行了比较,提出的方法取得了显著的提升。在图像去雨任务上,本文提出的ELF(image deeraining meets association learning and Transformer)方法在合成数据集Test1200上,相比于MPRNet(multi-stage progressive image restoration network),PSNR(peaksignal-to-noise ratio)值提高0.9dB;在水下图像增强任务上,ELF在R90数据集上超过Ucolor方法4.15dB;在低照度图像增强任务上,相对于LLFlow(flow-based low-light image enhancement)算法,ELF获得了1.09dB的提升。结论 本文方法在效果和性能上具有优势,在常见的图像去雨、低照度图像增强和水下图像修复等任务上优于代表性的方法。  相似文献   

13.
目的 图像逆半色调的目的是从二值半色调图像中恢复出连续色调图像。半色调图像丢失了大量原始图像内容信息,因此逆半色调成为一个经典的图像重建病态问题。现有的逆半色调算法重建效果无法满足对图像细节和纹理的需求。此外,已有方法大多忽略了训练策略对模型优化的重要影响,导致模型性能较差。针对上述问题,提出一个逆半色调网络以提高半色调图像重建质量。方法 首先提出一个端到端的多尺度渐进式残差学习网络(multiscale progressivoly residual learning network,MSPRL)以恢复出更高质量的连续色调图像。该网络基于UNet架构并以多尺度图像作为输入;为充分利用不同尺度输入图像的信息,设计一个浅层特征提取模块以捕获多尺度图像的注意力信息;同时探讨不同学习策略对模型训练和性能的影响。结果 实验在7个数据集上与6种方法进行对比。在Place365和Kodak数据集上,相比性能第2的方法,峰值信噪比(peak signal-to-noise ratio,PSNR)分别提高0.12dB和0.18dB;在其他5个常用于图像超分辨率的测试数据集Set5、Set14、BSD100(Berkeley segmentation dataset 100)、Urban100和Manga109上,相比性能第2的方法,PSNR值分别提高0.11dB、0.25dB、0.08dB、0.39dB和0.35dB。基于本文的训练策略,重新训练的渐进式残差学习网络相比未优化训练模型在7个数据集上PSNR平均提高1.44dB。本文方法在图像细节和纹理重建上实现最优效果。实验表明选用合适的学习策略能够优化模型训练,对性能提升具有重要帮助。结论 本文提出的逆半色调模型,综合UNet架构和多尺度图像信息的优点,选用合适的训练策略,使得图像重建的细节与纹理更加清晰,视觉效果更加细致。本文算法代码公布在https://github.com/Feiyuli-cs/MSPRL。  相似文献   

14.
目的 人脸超分辨率重建是特定应用领域的超分辨率问题,为了充分利用面部先验知识,提出一种基于多任务联合学习的深度人脸超分辨率重建算法。方法 首先使用残差学习和对称式跨层连接网络提取低分辨率人脸的多层次特征,根据不同任务的学习难易程度设置损失权重和损失阈值,对网络进行多属性联合学习训练。然后使用感知损失函数衡量HR(high-resolution)图像与SR(super-resolution)图像在语义层面的差距,并论证感知损失在提高人脸语义信息重建效果方面的有效性。最后对人脸属性数据集进行增强,在此基础上进行联合多任务学习,以获得视觉感知效果更加真实的超分辨率结果。结果 使用峰值信噪比(PSNR)和结构相似度(SSIM)两个客观评价标准对实验结果进行评价,并与其他主流方法进行对比。实验结果显示,在人脸属性数据集(CelebA)上,在放大8倍时,与通用超分辨率MemNet(persistent memory network)算法和人脸超分辨率FSRNet(end-to-end learning face super-resolution network)算法相比,本文算法的PSNR分别提升约2.15 dB和1.2 dB。结论 实验数据与效果图表明本文算法可以更好地利用人脸先验知识,产生在视觉感知上更加真实和清晰的人脸边缘和纹理细节。  相似文献   

15.
目的 全变分(TV)去噪模型具有较好的去噪效果,但对于图像的弱边缘和纹理细节的保持不够理想。自适应分数阶全变分(AFTV)模型根据图像局部信息,区分图像的纹理区域和非纹理区域,自适应计算投影算法中的软阈值,可较好地保持图像的弱边缘和纹理细节,但该方法当噪声增大时“阶梯”效应比较明显,弱边缘和纹理细节保持效果不够理想。针对该问题,提出一种改进的分数阶全变分去噪算法。方法 该算法在计算残差图像时,用分数阶全变分模型替代整数一阶全变分模型,并根据较精确的残差图像的局部方差区分图像纹理区域和平坦区域,使保真项参数的自适应选取更加合理,提高了算法的去噪性能。结果 针对3种不同类型的噪声图像,将本文模型与TV模型和AFTV模型进行对比实验,并采用峰值信噪比(PSNR)和结构相似性(SSIM)评定去噪效果和纹理保持能力。对于高斯噪声图像,本文算法在PSNR方面比TV模型和AFTV模型分别可平均提高2.72 dB和1.38 dB,SSIM分别可平均提高0.047和0.020。对于椒盐噪声图像,本文算法结合中值滤波算法在PSNR和SSIM方面比传统中值滤波算法分别可平均提高1.308 dB和0.011。对于泊松噪声图像,本文算法在PSNR、SSIM方面与AFTV较接近,比TV分别可提高1.59 dB和0.005。结论 通过对添加不同类型的噪声图像进行实验,结果表明提出的算法在去噪性能上与TV和AFTV相比均有较大提高,尤其对于噪声较大的图像效果更为显著,在去噪效率上与AFTV的时间复杂度相当,时耗接近略有降低。且本文算法普适性较好,能有效去除多种典型类型的噪声。  相似文献   

16.
针对现有模型修复带有随机不规则掩码且语义内容复杂的图片时细节不够真实这一问题,提出了一种基于门控卷积和SENet的双判别生成对抗网络图像修复模型。首先,将破损图片掩码输入由若干门控卷积堆叠成的粗网络中,在上采样时添加通道注意力(SE),结合L1重建损失,得到初步修复图;然后,将初步修复图输入精细网络,精细网络由若干门控卷积块和通道注意力块构成,结合重构损失、感知损失和对抗损失完善重要特征和细节,将破损图像的完好区域覆盖到精细网络的修复图上,得到完成修复的图片;最后,使用双判别网络结构进行训练,使精细网络的输出与完成修复的图片更加真实。在celebA数据集上进行实验,所提模型对带有大面积不规则掩码图片的修复结果在峰值信噪比(PSNR)上达到了27.39 dB,相较于部分卷积提升了6.74%,在结构相似性(SSIM)上达到了0.921 6,较部分卷积提升了2.95%。实验结果表明,引入通道注意力和双判别结构有助于提升图像修复的细节。  相似文献   

17.
目的 图像修复是计算机视觉领域的研究热点之一。基于深度学习的图像修复方法取得了一定成绩,但在处理全局与局部属性联系密切的图像时难以获得理想效果,尤其在修复较大面积图像缺损时,结果的语义合理性、结构连贯性和细节准确性均有待提高。针对上述问题,提出一种基于全卷积网络,结合生成式对抗网络思想的图像修复模型。方法 基于全卷积神经网络,结合跳跃连接、扩张卷积等方法,提出一种新颖的图像修复网络作为生成器修复缺损图像;引入结构相似性(structural similarity,SSIM)作为图像修复的重构损失,从人眼视觉系统的角度监督指导模型学习,提高图像修复效果;使用改进后的全局和局部上下文判别网络作为双路判别器,对修复结果进行真伪判别,同时,结合对抗式损失,提出一种联合损失用于监督模型的训练,使修复区域内容真实自然且与整幅图像具有属性一致性。结果 为验证本文图像修复模型的有效性,在CelebA-HQ数据集上,以主观感受和客观指标为依据,与目前主流的图像修复算法进行图像修复效果对比。结果表明,本文方法在修复结果的语义合理性、结构连贯性以及细节准确性等方面均取得了进步,峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性的均值分别达到31.30 dB和90.58%。结论 本文提出的图像修复模型对图像高级语义有更好的理解,对上下文信息和细节信息把握更精准,能取得更符合人眼视觉感受的图像修复结果。  相似文献   

18.
目的 基于深度学习的飞机目标识别方法在遥感图像解译领域取得了很大进步,但其泛化能力依赖于大规模数据集。条件生成对抗网络(conditional generative adversarial network,CGAN)可用于产生逼真的生成样本以扩充真实数据集,但对复杂遥感场景的建模能力有限,生成样本质量低。针对这些问题,提出了一种结合CGAN样本生成的飞机识别框架。方法 改进条件生成对抗网络,利用感知损失提高生成器对遥感图像的建模能力,提出了基于掩膜的结构相似性(structural similarity,SSIM)度量损失函数(masked-SSIM loss)以提高生成样本中飞机区域的图像质量,该损失函数与飞机的掩膜相结合以保证只作用于图像中的飞机区域而不影响背景区域。选取一个基于残差网络的识别模型,与改进后的生成模型结合,构成飞机识别框架,训练过程中利用生成样本代替真实的卫星图像,降低了对实际卫星数据规模的需求。结果 采用生成样本与真实样本训练的识别模型在真实样本上的进行实验,前者的准确率比后者低0.33%;对于生成模型,在加入感知损失后,生成样本的峰值信噪比(peak signal to noise ratio,PSNR)提高了0.79 dB,SSIM提高了0.094;在加入基于掩膜的结构相似性度量损失函数后,生成样本的PSNR提高了0.09 dB,SSIM提高了0.252。结论 本文提出的基于样本生成的飞机识别框架生成了质量更高的样本,这些样本可以替代真实样本对识别模型进行训练,有效地解决了飞机识别任务中的样本不足问题。  相似文献   

19.
目的 为了解决利用显著区域进行图像压缩已有方法中存在的对多目标的图像内容不能有效感知,从而影响重建图像的质量问题,提出一种基于多尺度深度特征显著区域检测图像压缩方法。方法 利用改进的卷积神经网络(CNNs),进行多尺度图像深度特征检测,得到不同尺度显著区域;然后根据输入图像尺寸自适应调整显著区域图的尺寸,同时引入高斯函数,对显著区域进行滤波,得到多尺度融合显著区域;最后结合编码压缩技术,对显著区域实行近无损压缩,非显著区域利用有损编码技术进行有损压缩,完成图像的压缩和重建工作。结果 提出的图像压缩方法较JPEG压缩方法,编码码率为0.39 bit/像素左右时,在数据集Kodak PhotoCD上,峰值信噪比(PSNR)提高了2.23 dB,结构相似性(SSIM)提高了0.024;在数据集Pascal Voc上,PSNR和SSIM两个指标分别提高了1.63 dB和0.039。同时,将提出的多尺度特征显著区域方法结合多级树集合分裂(SPIHT)和游程编码(RLE)压缩技术,在Kodak数据集上,PSNR分别提高了1.85 dB、1.98 dB,SSIM分别提高了0.006、0.023。结论 提出的利用多尺度深度特征进行图像压缩方法得到了较传统编码技术更好的结果,该方法通过有效地进行图像内容的感知,使得在图像压缩过程中,减少了图像内容损失,从而提高了压缩后重建图像的质量。  相似文献   

20.
对于低照度图像增强过程中,因图像内容重叠且部分区域亮度差异较大导致的图像细节丢失的问题,提出一个注意力机制下的多阶段低照度图像增强网络。第一阶段利用改进的多尺度融合模块对图像进行初步增强;第二阶段利用第一阶段增强后的图像信息与本阶段的输入进行级联,并将其结果作为该阶段多尺度融合模块的输入;第三阶段利用第二阶段增强后的图像信息与该阶段的输入级联,并将其结果作为该阶段多尺度融合模块的输入。这样利用多阶段的方式完成自适应的亮度提升和细节的保留。在公开数据集LOL和SICE上的实验结果表明,相较于MSR算法、灰度直方图均衡化(HE)算法和RetinexNet等算法和网络,所提网络的峰值信噪比(PSNR)的数值提高了11.0%~28.9%,结构相似性(SSIM)的数值提高了6.8%~46.5%。所提网络利用多阶段和注意力机制实现低照度图像增强,有效解决了图像内容重叠和亮度差异大的问题,得到的图像细节更丰富,纹理更清晰,主观辨识度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号