首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
为了增强超高分子量聚乙烯(UHMWPE)的性能,研究采用表面改性的Ti_3AlC_2填充UHMWPE,通过热压成型制备了Ti_3AlC_2/UHMWPE复合材料。采用SEM观察复合材料的微观结构,表明Ti_3AlC_2均匀分散在UHMWPE基体中,表面处理后的填料与基体界面熔合较好;热分析结果表明,Ti_3AlC_2的添加降低了UHMWPE的结晶度和结晶热焓,同时提高了聚合物的热传导性;DMA分析结果表明,添加Ti_3AlC_2有效地提高了Ti_3AlC_2/UHMWPE复合材料的抗蠕变性能,得益于无机粒子改善了复合材料的硬度和刚性,提高了复合材料抗外界应力变形能力;摩擦学性能分析表明,适量的Ti_3AlC_2(质量分数≤15wt%)填充UHMWPE能有效提高复合材料的减磨抗摩性能,同时磨痕表面形貌分析结果表明,Ti_3AlC_2/UHMWPE复合材料的摩擦磨损机制由粘着磨损向磨粒磨损转变。  相似文献   

2.
聚酰亚胺复合材料是一种常见的摩擦材料,具有良好的抗磨减摩性能。通过总结近几十年来聚酰亚胺复合材料的摩擦学性能的研究情况,综述纤维、晶须、固体润滑剂、纳米材料填充改性、聚合物共混的改性方法,分析并讨论不同改性方法对聚酰亚胺复合材料摩擦学性能的影响。指出对于聚酰亚胺摩擦学研究所面临的问题,并展望未来聚酰亚胺复合材料在摩擦磨损方面的发展方向。  相似文献   

3.
纳米ZnO和SiO2共混填充UHMWPE复合材料的摩擦磨损行为   总被引:1,自引:0,他引:1  
以纳米ZnO和纳米SiO2作为复合填料,通过热压成型工艺制备了纳米ZnO-SiO2复合填充超高分子量聚乙烯(UHMWPE)复合材料;采用销-盘式摩擦磨损试验机考察了复合材料在干摩擦条件下与45#钢配副时的摩擦磨损行为;采用扫描电子显微镜观察了复合材料磨损表面形貌。结果表明,适量的纳米ZnO-SiO2作为复合填料可有效地改善UHMWPE的摩擦磨损性能,其中填充2%ZnO 2%SiO2的UHMWPE基复合材料改性效果最为明显。与纯UHMWPE材料相比,其磨损率下降了84.7%。纯UHMWPE的磨损机制主要表现为粘着磨损和疲劳磨损,而不同含量的无机纳米微粒共混填充UHMWPE基复合材料的磨损机制主要表现为不同程度的粘着磨损、犁沟效应和塑性变形特征。  相似文献   

4.
石墨烯具有优良的热性能、机械性能和电性能,填充少量石墨烯即可提高复合材料的性能。从石墨烯的制备开始,介绍了石墨烯的化学改性方法,包括羧基、羟基、环氧基的改性以及非共价键功能化和聚合物功能化的研究进展;总结了聚合物/石墨烯复合材料的制备方法以及聚合物/石墨烯复合材料的应用并展望了石墨烯及其复合材料的发展方向。  相似文献   

5.
地质聚合物作为新兴的绿色环保、低能耗胶凝材料,具有早期强度高、耐酸碱等优异性能,但脆性大、韧性差等缺陷影响其推广应用;在地质聚合物中掺入微纳米材料可以有效地改善地质聚合物的性能,提高其韧性。微纳米材料在地质聚合物中均匀分散是保证改性后地质聚合物具有优良性能的关键,为此,可在掺入过程中采用外力的方法进行分散,也可对微纳米材料进行表面改性来提高其分散性能,且表面改性后的微纳米材料能够更好地与地质聚合物基体结合。本文综述了纳米颗粒(如纳米二氧化硅、纳米二氧化钛)、碳纳米管、石墨烯、微米颗粒(如粉煤灰微球、硅灰)、微米纤维(如碳化硅晶须)等微纳米材料对地质聚合物的改性研究成果,总结了常见微纳米材料改性地质聚合物的分散方法及作用机理。其分散方法包括机械搅拌、超声分散和分散剂表面修饰。微纳米材料对地质聚合物的作用机理主要有填充作用、成核作用和桥接作用。微纳米材料能够填充地质聚合物的孔隙和裂缝,改善地质聚合物的孔结构;微纳米材料能够作为成核位点加速地质聚合物的缩聚过程,改善地质聚合物的微观结构与宏观性能;纤维状的微纳米材料具有桥接作用,可阻止裂缝的生成及扩展。此外,对于表面有基团(如羟基、羧基等)的...  相似文献   

6.
综述了碳纤维/聚合物复合材料摩擦学改性的研究进展情况,重点分析讨论了碳纤维表面改性、固体润滑剂共混改性、纤维混杂复合改性以及纳米粒子填充改性对碳纤维增强聚合物复合材料摩擦学性能影响的微观机制,并指出多元、多尺度功能性填料协同复合增强是改善该复合材料摩擦学性能的重要手段。  相似文献   

7.
本文综述了聚醚醚酮(Polyetheretherketone,PEEK)的特性及其应用,重点探讨了PEEK复合改性中的无机填料填充、纤维增强、聚合物共混及表面改性四个方面对PEEK复合材料性能的影响,简述了PEEK复合材料在航空航天领域、汽车工业及涂料工业中的应用研究进展,并指出PEEK改性过程中纳米材料的团聚以及无机有机物的相容性仍是目前亟待解决的重要问题,寻求更多的增强体和简便复合工艺以实现材料更优性价比是今后的研究重点。  相似文献   

8.
利用MM 200型摩擦磨损试验机,较系统地考察了纳米Fe2O3填充的UHMWPE基复合材料的摩擦学性能,并与微米Fe2O3填充的复合材料作了对比研究。结果显示纳米Fe2O3粉体增强UHMWPE复合材料比微米Fe2O3粉体增强UHMWPE具有更好的减磨和抗磨性,文中对纳米和微米Fe2O3颗粒增强UHMWPE的磨损机理进行了分析。  相似文献   

9.
为了提高超高分子量聚乙烯(UHMWPE)的耐热性,采用超级电容活性炭(微米级)对UHMWPE进行填充改性,制备活性炭/UHMWPE复合材料。通过热重(TG/DTG)测试和维卡软化点温度测试分析了复合体系的热性能;同时研究了活性炭含量对UHMWPE的电学性能、冲击性能、表面及摩擦系数的影响。结果表明:活性炭填充可使UHMWPE材料失重5%时的分解温度提高17.44℃,维卡软化点提高了约18℃;且活性炭对UHMWPE复合体系的抗静电性、冲击性能、表面均有比较明显的改善。  相似文献   

10.
在前人研究的基础之上,归纳总结了聚合物复合材料填充剂的种类,综述了对其进行表面改性的目的、条件、方法、工艺以及对改性结果的表征等。文章还分析了影响填充聚合物复合材料性能的因素,指出了今后发展的方向。  相似文献   

11.
以纳米SiO2作为填料制备UHMWPE/纳米SiO2复合材料,采用MRH-5A型摩擦磨损试验机研究纳米含量与裁荷等因素对复合材料摩擦磨损性能的影响;利用扫描电子显微镜观察复合材料磨损表面形貌并分析其磨损机理.结果表明,填充纳米SiO2,UHMWPE的摩擦系数减小约40%;SiO2含量为10%左右时,复合材料的摩擦系数最小,磨损性能最好;随着裁荷的增大,复合材料的摩擦系数随之增大,尔后趋于平稳;复合材料磨损量随着载荷的增大而增加;摩擦过程中存在短暂的摩擦跑合期.纯UHM-WPE的磨损机理是粘附,而复合材料的磨损机理主要表现为疲劳剥层.  相似文献   

12.
Cosmic radiation shielding properties are important for spacecraft, and hydrogenous materials such as polyethylene have been shown to be effective in shielding against galactic cosmic rays and solar energetic particles. Ultrahigh molecular weight polyethylene (UHMWPE) fibers, which are effective in such shielding, also have advanced mechanical and physical properties, which potentially are very valuable for NASA space missions both as a radiation shield and as vehicle structure. In our previous studies, we fabricated a nano-epoxy matrix with reactive graphitic nanofibers that showed enhanced mechanical (including strength, modulus and toughness) and thermal properties (higher Tg, stable CTE, and higher ageing resistance), as well as wetting and adhesion ability to UHMWPE fibers. In this work, the radiation shielding performance of the UHMWPE fiber reinforced nano-epoxy composite was characterized by radiation tests at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results showed that the high radiation shielding performance associated with UHMWPE was not degraded by the addition of graphitic nanofibers in the matrix. Together with the previous studies showing higher mechanical properties, these new studies validate the importance of the UHMWPE fiber/nano-epoxy composite for potential applications in more durable space composites and structures, and offer reduced manufacturing costs and wider design applications through avoidance of specialized and in some cases ineffective UHMWPE fiber surface treatment processes.  相似文献   

13.
Chemical etching is an established and popular method of increasing the adhesion to such materials as polyethylene. Ultra-high-molecular-weight polyethylene (UHMWPE) fibers are exceptional candidates for composite materials except for their poor adhesion. In this research, the bulk, surface and adhesive properties of as-received and chromic acid etched UHMWPE fibers have been examined. The fiber tensile properties, surface chemistry and wettability have been characterized. The adhesion of epoxy has been characterized by the interfacial shear strength of a droplet microbond. The more than six-fold increase in interfacial shear strength observed in this work is related to the etching process. The removal of an oxygen-rich weak boundary layer, surface roughening and oxidation of the UHMWPE contribute to the enhanced adhesion.  相似文献   

14.
A breakthrough has been made in blending of two immiscible biocompatible polymers to form thin transparent interpenetrating network composite membranes (CM) with exceptional improvement in properties. Two immiscible polymers, namely the biaxially drawn ultra high molecular weight polyethylene (UHMWPE) film and polyether polyurethane (PU) were used. The fabrication included solution casting and heat compaction. During the fabrication, the CM still preserved the orientation of UHMWPE fibers but introduced the interpenetration of PU in UHMWPE film. The intimate interaction of PU with UHMWPE fibers was viewed through the transparency of CM. Differential scanning calorimetry (DSC) data showed the melting temperature (Tm) of UHMWPE increased by about 10°C in CM and about 5°C in heat-compacted membranes (HCM). Morphological observations indicated that CM presented a layered structure while HCM was a dense material without obvious void inclusions. The ultimate tensile strength and relative Youngs modulus of CM are about 62 MPa and 460 MPa, respectively. They are about four times greater in strength and 150 times greater in modulus compared with those of PU. Heat compaction resulted in a membrane with nearly five times the tensile strength and 50 times the Youngs modulus of PU. The engineered ultimate strain of CM is about 26%, 8% more than that of the porous UHMWPE film while about 70% of HCM, which is a 50% increase achieved through heat compaction. The tensile fracture toughness is about 93 mJ for CM and 211 mJ for HCM, two and five times that for the porous UHMWPE film, respectively. The significant modification on the properties of the heat-compacted composite may raise broad interest in using the CM to develop membrane-related devices and organ covers in biomedical applications. ©©1999©Kluwer Academic Publishers  相似文献   

15.
The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy.  相似文献   

16.
La2O3填充超高分子量聚乙烯的摩擦磨损性能   总被引:4,自引:0,他引:4  
用La2O3对超高分子量聚乙烯(UHMWPE)进行了填充改性,测试了La2O3填充量对其硬度及摩擦学性能的影响。用扫描电镜观察了材料摩擦表面磨痕形貌。结果发现:随着La2O3含量的增加,UHMWPE—La2O3复合材料的硬度上升。填充量为6%的UHMWPE—La2O3复合材料在干摩擦及磨粒磨损条件下的磨损率都最小。UHMWPE在干摩擦下的磨损主要表现为犁沟及粘着,填充La2O3可减轻磨损表面的犁沟,但填充量过高,磨损转变为表面脆性脱落。  相似文献   

17.
采用层状复合工艺,制备了超高分子量聚乙烯(UHMWPE)-聚氨酯泡沫材料(PUF)复合材料;设计了复合材料隔爆实验,运用定制的聚偏氟乙烯(PVDF)压电传感器,直接测量了隔爆实验中材料内部冲击波压力,研究了UHMWPE-PUF复合材料对爆炸冲击波的衰减性能。研究表明,所制备的UHMWPE-PUF复合材料隔爆能力与同厚度的纯聚氨酯材料相比提高了近50%。将UHMWPE材料与PUF材料进行复合,可以充分发挥UHMWPE材料的高强、高模以及PUF材料较高的吸能特点,同时又弥补了PUF材料强度低的缺陷,且材料对爆炸冲击波的衰减性能得到极大提升,在爆炸防护领域有着很好的应用前景。  相似文献   

18.
Ultra-high molecular weight polyethylene (UHMWPE) fibers have good mechanical and physical properties and effective radiation shielding functions, which are significant for aerospace structures. In our previous work, nano-epoxy matrices were developed based on addition of reactive graphitic nanofibers (r-GNFs) in a diluent to form a blend. It is found that improved wettability and enhanced adhesion of the matrices to UHMWPE fibers can be obtained. In this study, a series of nano-epoxy matrices with different concentrations of r-GNFs (up to 0.8 wt%) and different weight ratios of r-GNFs to a reactive diluent (1:4, 1:6, 1:7, and 1:9) were prepared. Composite bundle specimens of UHMWPE fiber/nano-epoxy were fabricated and their tensile behavior was investigated. All load-displacement curves of the UHMWPE/nano-matrix bundle composites under tensile loading showed three regions corresponding to the three deformation and failure stages of the materials: 1) elastic deformation stage, 2) plateau stage, and 3) UHMWPE fiber failure stage. The nano-epoxy with 0.3 wt% of r-GNFs and with 1:6 ratio of r-GNFs to the diluent proved to be the best matrix for UHMWPE fiber composites with enhanced tensile properties. For the resulting composite, the load level and consumed energy in the plateau stage were increased by 8% and 30% over the UHMWPE fiber/pure-epoxy specimens, respectively. This UHMWPE fiber composite with the optimized nano-epoxy matrix also possesses the highest initial stiffness and ultimate tensile strength among all the resulting UHMWPE fiber composites. These results laid a foundation for us to fabricate UHMWPE fiber reinforced composite laminates in the near future.  相似文献   

19.
Structural, mechanical and tribological properties of composite materials based on ultra-high molecular weight polyethylene reinforced with carbon fibers were investigated. The effect of surface modification of carbon fibers on the interaction at the fiber–matrix interface in UHMWPE based composites was studied. It was found that the thermal oxidation of carbon fibers by air oxygen at 500 °C can significantly enhance the interfacial interaction between the polymer matrix and carbon fibers. This allowed us to form composite materials with improved mechanical and tribological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号