首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以乙酰丙酮铜(Cu(AcAc)2)、乙酸锌(Zn(CH3COO)2·2H2O)、氯化亚锡(SnCl2·2H2O)、升华硫(S粉)和十二硫醇为原料,用热注射法合成了Cu2ZnSnS4(CZTS)纳米晶。再将Cu2ZnSnS4纳米晶制成胶体墨水,用旋涂法制备出Cu2ZnSnS4薄膜。用X射线衍射(XRD)仪、拉曼光谱(RS)仪、透射电镜(TEM)、扫描电镜(SEM)、X射线能量色散谱仪(EDS)和紫外-可见光谱(UV-Vis)分光光度计对CZTS纳米晶及薄膜的晶体结构、微观形貌、化学组成及光学性能进行表征,研究了注射温度对纳米晶结构、形貌、晶粒大小以及化学组成的影响以及热处理时间对Cu2ZnSnS4薄膜结构、形貌、化学组成和光学性能的影响。结果表明,在注射温度为180℃时合成的CZTS纳米晶为锌黄锡矿结构,平均粒径为18 nm。在500℃热处理2 h所制备出的薄膜,在可见光范围内其吸收系数高达104cm-1,禁带宽度为1.45 eV。  相似文献   

2.
Cu(In,Ga) Se_2(CIGS)薄膜太阳能电池是单结转换效率最高(~22. 6%)的光伏器件,但In、Ga是稀缺元素,从而限制了CIGS电池的产业化。新型材料Cu_2ZnSnS_4(CZTS)是结构与光电性能均与CIGS十分相似的直接带隙半导体材料,它在CIGS器件结构中可替代CIGS吸收层,并得到新型CZTS薄膜太阳能电池。与CIGS相反,CZTS的原料丰富、无毒。大量研究表明,CZTS薄膜太阳能电池具有较高的转换效率和良好的稳定性,且可采用低成本、非真空的溶液法薄膜沉积技术来制造,因此CZTS器件是一种低成本、环境友好、极具产业化前景的薄膜太阳能电池。CZTS器件具有与CIGS器件一样的堆层结构{SLG/Mo/CZTS/CdS/i-ZnO/n-ZnO},目前转换效率最高(~12. 6%)的CZTS器件仍沿用CIGS器件的CdS缓冲层,因而大规模生产与应用中存在高毒重金属镉污染的危险,寻找能替代CdS的无镉缓冲层材料来消除潜在的镉污染问题十分必要。此外,与高效率的{CIGS/CdS}器件相比,{CZTS/CdS}器件界面的能带匹配可能并不是最优,CZTS器件的转换效率还远不如CIGS器件,因此需要寻找新的无镉缓冲层材料。在确定新缓冲层材料时,必须考虑{CZTS/新缓冲层}界面的能级对齐效应。CIGS和CZTS器件的缓冲层新材料基本上可归纳为3种半导体材料:硫化物、硫氧化物、氧化物。这些材料的薄膜均可用化学浴(CBD)法等多种方法来制备。材料选取很大程度上取决于其与CZTS或CIGS吸收层接触所形成界面上的导带带阶情况,因为导带带阶对器件性能参数有很大的影响。大的正导带带阶(尖刺状带阶)对少子(电子)收集存在一个势垒而降低短路电流密度J_(sc);相反,负导带带阶(断崖状带阶)导致缓冲层与吸收层界面上的复合增大而降低了开路电压V_(oc);理想情况是器件有一个小(0~0. 4 eV)的正导带带阶(尖刺状带阶),正如在使用CdS缓冲层的CIGSSe器件中所发现的那样。为了研发低成本、环境友好的CZTS电池器件的新型缓冲层材料,本文综述了CZTS和CIGS器件的无镉缓冲层材料的研究进展,讨论了无镉缓冲层材料的选用条件,以及多种硫化物(如ZnS和In_2S_3)、硫氧化物(如Zn(S,O)和In(S,O,OH))、氧化物(如ZnO、TiO_2、Zn_(1-x)Mg_xO_y和Zn_(1-x)Sn_xO_y等)薄膜作为CZTS缓冲层的性能特点(特别是它们的导带带阶)以及存在的问题,探讨了其发展方向。对于含硒CZTSSe器件,In2S3、Zn(S,O)是良好的无镉缓冲层材料,而对于更环保、低成本的全硫CZTS器件,Zn_(1-x)Mg_xO_y和Zn_(1-x)Sn_xO_y可提供良好性能的缓冲层。  相似文献   

3.
刘耀成  王公平  高金凤  徐键  方刚 《材料导报》2014,28(23):132-140,146
Cu2ZnSnS4(CZTS)具有高达104 cm-1的吸收系数,其约1.45eV的禁带宽度与太阳光谱非常匹配,且CZTS所含元素无毒、在地球上含量丰富、价格低廉,适用于辊对辊、丝网印刷等非真空的低成本制造方法,这使得CZTS太阳电池已成为最具产业化发展潜力的薄膜太阳电池之一,因而最近几年倍受关注。低成本的非真空制造方法大都采用CZTS纳米颗粒或其纳米墨水,因此高质量的CZTS纳米粉体的低成本、绿色制备成为CZTS太阳电池器件制造的重要部分。对CZTS纳米颗粒及其纳米墨水的制备方法进行了综述,分析和讨论各种CZTS粉体的制备方法工艺特点及其优缺点,并探讨其发展趋势。  相似文献   

4.
P型半导体Cu_2ZnSnS_4(CZTS)由于具有最佳的直接带隙(1.0~1.5eV)、高的光吸收系数(超过104 cm~(-1))以及丰富、无毒的元素组成,使其成为商业化低成本太阳能电池最有希望的候选材料之一。然而,材料本身的一些缺陷制约了CZTS薄膜太阳能电池效率的提高。为了提高CZTS薄膜太阳能电池的效率,研究者们使用其他阳离子部分取代Cu、Zn或Sn来改善CZTS的缺陷。从CZTS的3种不同取代位置出发,综述了近年来各种阳离子部分取代CZTS的研究进展,同时对阳离子部分取代CZTS材料的发展前景进行了展望。  相似文献   

5.
采用电化学沉积的方法在SnO2透明导电玻璃基底上沉积Cu2ZnSnS4(CZTS)薄膜,在氮气保护下对其进行进一步硫化,研究了溶液中不同Na2S2O3浓度对沉积薄膜性质的影响。运用X射线衍射、扫描电镜、紫外-可见光分光光度计和拉曼光谱等手段分别对薄膜进行表征。实验结果表明:随着浓度的增加,薄膜的结构和光学特性逐渐变好。当Na2S2O3的浓度为0.11 mol/L时,制得理想的具有类黝锡矿结构的CZTS薄膜,光学带隙1.51 eV。  相似文献   

6.
采用固态硫化法硫化铜锡锌(CZT)预制膜制备铜锌锡硫(Cu_2ZnSnS_4,CZTS)薄膜,研究硫化时间对CZTS薄膜性能的影响。利用X射线衍射仪(XRD)和紫外拉曼光谱仪(Raman)分析薄膜的物相结构,通过X射线能谱仪(EDS)分析薄膜的化学组分,采用扫描电镜(SEM)观察薄膜的表面形貌,利用UV-Vis研究薄膜的光学特性。结果表明:随着硫化时间延长,Cu含量增加,Zn含量明显减少。硫化40min以上制备的薄膜出现导致禁带宽度减小的杂相SnS,Sn2S3和Cu_2SnS_3。当硫化时间为20min时,样品为单相的CZTS薄膜,薄膜表面均匀平整,化学组分贫Cu富Sn,吸收系数达104cm-1,禁带宽度Eg约为1.56eV。  相似文献   

7.
采用单靶磁控溅射方法分别在玻璃和镀有Mo背电极的Soda-lime玻璃衬底上沉积Cu( In0.7Ga0.3)Se2 (CIGS)薄膜.研究了靶功率变化对CIGS薄膜的晶体结构、表面形貌和光学性能的影响.采用XRD表征薄膜的组织结构,SEM和EDS观察和分析薄膜的表面形貌和成分,紫外-可见光分光光度计测试薄膜的透过率光谱.结果表明,在不同功率下制备的CIGS薄膜均具有(112)面择优取向.当溅射功率为300W时,CIGS薄膜的表面形貌最平整,结晶最均匀,n(Cu)∶n(In)∶n(Ga)∶n(Se)=30.00∶15.01∶3.97∶51.03组分符合高效吸收层的要求.溅射沉积的CIGS薄膜对可见光的平均透过率低于2%,光学带隙约为1.4eV.  相似文献   

8.
Cu2ZnSnS4纳米颗粒及其薄膜的制备与表征   总被引:1,自引:0,他引:1  
采用热注入法,在油胺(OLA)中合成出Cu2ZnSnS4(CZTS)纳米颗粒,并在玻璃衬底上制备了薄膜,研究了不同合成温度对纳米颗粒生成的影响.通过X射线衍射仪、拉曼光谱仪、透射电子显微镜、扫描电子显微镜、紫外可见分光光度计对所得纳米晶材料的结构与成分、颗粒大小与形貌、光吸收谱进行了测试分析.研究结果表明:采用热注入法的最佳合成温度在260℃左右,该温度下生成的多晶CZTS纳米颗粒尺寸约10 nm,分散性良好,光学禁带宽度约1.5 eV.  相似文献   

9.
Cu2ZnSnS4薄膜光电性能及其太阳电池的制备和研究   总被引:1,自引:0,他引:1  
江丰  沈鸿烈  金佳乐  王威 《功能材料》2012,43(15):2040-2044
采用硫化Zn/Sn/Cu金属多层膜的方法制备了太阳电池吸收层用的Cu2ZnSnS4(CZTS)薄膜。用X射线衍射仪、拉曼光谱仪、紫外-可见近红外分光光度计、扫描电镜、能谱仪及数字源表等对薄膜进行了一系列的表征。结果表明制备的CZTS薄膜没有杂相存在并具有标准拉曼峰。薄膜在可见光范围内的吸收系数>104cm-1,同时其光学带隙接近1.5eV。CZTS薄膜具有均匀致密的表面形貌,薄膜元素比例非常接近标准化学计量比。此外,CZTS薄膜呈现显著的光电流响应性能,其光电流的激发和衰减时间分别为0.0736和0.2646s。  相似文献   

10.
王威  沈鸿烈  焦静  金佳乐 《功能材料》2015,(3):3028-3032
采用乙二醇作为溶剂,硫代乙酰胺作为硫源,通过微波液相合成法制备出颗粒大小均一的Cu2ZnSnS4(CZTS)纳米颗粒。采用XRD、Raman、EDS、TEM以及UV-Vis-Nir等表征手段对所制备的纳米颗粒的物相、元素比例、形貌以及光学性能进行了分析。测试结果表明,所制备的CZTS纳米颗粒为(112)择优取向的锌黄锡矿结构,纳米颗粒的平均尺寸约为3.4nm,其光学带隙为1.85eV,呈现出明显的量子尺寸效应导致的光学带隙蓝移现象。将CZTS纳米颗粒制成CZTS墨水并滴涂烘干形成了CZTS薄膜,其XRD和SEM结果表明,所制备的CZTS薄膜具有良好的结晶性,且表面较为致密。光照与暗态的I-V曲线测试表明,所制备薄膜具有明显的光电导效应。  相似文献   

11.
Chemical bath deposition and ion exchange were used to incorporate copper, zinc, tin and sulfur into a thin film precursor stack. The stack was then sulfurized to form the photovoltaic absorber material Cu2ZnSnS4 (CZTS). The morphology and elemental composition of the films at each process stage were analyzed by Auger electron spectroscopy and scanning electron microscopy, and the structural and optical properties of the sulfurized film were determined by a combination of X-ray diffraction, Raman scattering, and diffuse reflectance UV-Vis spectroscopy. Compositionally uniform microcrystalline CZTS with kesterite structure and a bandgap of 1.45 eV were observed. A preliminary solar cell device was produced exhibiting photovoltaic and rectifying behavior.  相似文献   

12.
Cu2ZnSnS4 (CZTS) thin films were prepared by a paste coating method as the absorb layer of solar cells. This method is more eco-friendly using ethanol as solvent and more convenient than traditional sol–gel method. The effects of sulfurization temperature on properties of thin film were studied. The results of X-ray diffraction and Raman spectroscopy showed the formation of kesterite structure of CZTS films. The scanning electron microscopy images revealed that CZTS thin film obtained at 550 °C were compact and uniform. The optical band gap of the CZTS film was about 1.5 eV, and the CZTS film had an obvious optoelectronic response. Moreover, CZTS solar cell was prepared with a conversion efficiency of 0.47 %.  相似文献   

13.
Cu2ZnSnS4 (CZTS) films were obtained by sulfurizing (Cu, Sn) S/ZnS structured precursors prepared by a combination of the successive ionic layer absorption and reaction method and the chemical bath deposition method, respectively. The effect of sulfurization time on structure, composition and optical properties of these CZTS thin films was studied. The results of energy dispersive spectroscopy indicate that the annealed CZTS thin films are of Cu-poor and Zn-rich states. The X-ray diffraction studies reveal that Cu2?x S phase exists in the annealed CZTS thin film prepared by sulfurization for 20 min, while the Raman spectroscopy analysis shows that there is a small Cu2SnS3 phase existing in those by sulfurization for 20 and 40 min. The band gap (E g ) of the annealed CZTS thin films, which are determined by reflection spectroscopy, varies from 1.49 to 1.56 eV depending on sulfurization time. The best CZTS thin film is the one prepared by sulfurization for 80 min, exhibiting a single kesterite structure, dense morphology, ideal band gap (E g  = 1.55 eV) and high optical absorption coefficient (>104 cm?1).  相似文献   

14.
Cu2ZnSnS4 (CZTS) thin films were prepared by sulfurizing single-layered metallic Cu–Zn–Sn precursors which were deposited by DC magnetron sputtering using a Cu–Zn–Sn ternary alloy target. The composition, microstructure and properties of the CZTS thin films prepared under different sputtering pressure and DC power were investigated. The results showed that the sputtering rate of Cu atom increases as the sputtering pressure and DC power increased. The microstructure of CZTS thin films can be optimized by sputtering pressure and DC power. The CZTS thin film prepared under 1 Pa and 30 W showed a pure Kesterite phase and a dense micro-structure. The direct optical band gap of this CZTS thin film was calculated as 1.49 eV with a high optical absorption coefficient over 104 cm?1. The Hall measurement showed the film is a p-type semiconductor with a resistivity of 1.06 Ω cm, a carrier concentration of 7.904 × 1017 cm?3 and a mobility of 7.47 cm2 Vs?1.  相似文献   

15.
In this work Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of spin coated CuO + ZnO precursor films under Sn and S ambience with different time. Precursor films were synthesized using air-stable inks consist of carboxylate-capped metal oxide nanoparticles. The composition, microstructure and properties of CZTS thin films prepared with different sulfurization time were investigated using inductively coupled plasma-mass spectrometry, X-ray diffraction, scanning electron microscopy, Raman spectroscopy and UV–vis–NIR spectroscopy. The inductively coupled plasma-mass spectrometry results show that mole ratios of Zn/Sn and Cu/(Zn + Sn) in the films can be adjusted by controlling sulfurization time. A composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 can be reached after sulfurizating with proper time. The influence of element composition change was also studied in our work using X-ray diffraction and Raman scattering. Two laser sources of 325 and 514 nm were involved in the Raman scattering analyze in order to identify secondary phases such as ZnS and Cu2?xS. The as-prepared CZTS films with a composition of Cu/Zn + Sn = ~0.8, and Zn/Sn = ~1.2 exhibit a direct optical band gap about 1.45 eV.  相似文献   

16.
This study reports the preparation of Cu2ZnSnS4 (CZTS) thin films by magnetron sputtering deposition with a Cu–Zn–Sn ternary alloy target and sequential sulfurization. The effects of substrate temperatures on the structural, morphological, compositional as well as optical and electrical properties were characterized. The results showed the CZTS thin films prepared by sulfurization at substrate temperature of 570 °C yielded secondary phases along with CZTS compound. The relatively good properties of CZTS thin film were obtained after sulfurization at substrate temperature of 550 °C. This CZTS film showed compact structure with large grain size of 900 nm, direct optical band gap of 1.47 eV, optical absorption coefficient over 104 cm?1, resistivity of 4.05 Ω cm, carrier concentration of 8.22 × 1018 cm?3, and mobility of 43.38 cm2 V?1 S?1.  相似文献   

17.
Copper zinc tin sulfide (CZTS, Cu2ZnSnS4) is a low band gap semiconductor that is attractive for use in solar cells. We investigated the dependence of the structure and properties of CZTS thin films on the temperature used to sulfurize precursor thin films composed of copper, zinc and tin fabricated by electrochemical deposition. The precursor films were sulfurized in a furnace with three zones, which allowed fine control of the sulfurization temperature between 250 and 400 °C. X-ray diffraction and Raman spectroscopic measurements confirmed that the films were composed of CZTS following sulfurization. The grain size and crystallinity of the films increased with sulfurization temperature. The composition of CZTS also varied with sulfurization temperature. The proportions of Cu and Zn increased while that of Sn decreased with increasing sulfurization temperature. Absorption and reflectance spectra revealed that the absorption coefficients and band gaps of the CZTS films varied with sulfurization temperature between 3–4.1 × 104 cm?1 and 1.4–1.53 eV, respectively. Solar cells containing CZTS sulfurized at 400 °C showed a maximum efficiency of 2.04 %, which was attributed to the higher crystallinity and larger grain size of CTZS compared with thin films sulfurized at lower temperatures. Our results show that control of sulfurization temperature is an important factor in optimizing the performance of CZTS thin films in solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号