首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于PSO的RBF神经网络学习算法及其应用   总被引:17,自引:0,他引:17  
提出了一种基于粒子群优化(PSO)算法的径向基函数(RBF)神经网络学习方法,首先利用减聚类算法确定网络径向基层的单元数,再用PSO对基中心和宽度进行优化,并与最小二乘法相结合训练RBF神经网络。将此算法用于混沌时间序列的预测,实例仿真表明此方法是有效的。  相似文献   

2.
一种基于遗传算法的RBF神经网络优化方法   总被引:19,自引:0,他引:19       下载免费PDF全文
提出了一种新的RBF神经网络的训练方法,采用遗传算法对RBF神经网络的隐层中心值和宽度进行了优化,用递推最小二乘法训练隐层和输出层之间的权值。在对非线性函数进行逼近的仿真中,验证了该算法的有效性。  相似文献   

3.
吕志胜  赖惠成 《计算机工程》2009,35(22):200-201
将径向基函数神经网络与横向均衡器相结合,采用递推最小二乘算法更新权值。将最小二乘误差作为代价函数以及与误差相关的变步长,使输出误差较传统的神经网络均衡器进一步减小,收敛速度得到提高。仿真结果表明,该均衡器对线性信道和非线性信道都表现出较好的性能,在较严重的非线性情况下其优越性更明显。  相似文献   

4.
郝晓丽  张靖 《计算机科学》2014,41(6):260-263
针对传统径向基函数神经网络构造的网络分类器通常存在分类精度不高、训练时间长等缺陷,首先提出了一种改进的自适应聚类算法,用于确定分类器的隐含层节点。该算法通过筛选基于轮廓系数的优秀样本群,来寻找最佳初始聚类中心,避免了传统K-means算法易受初始聚类中心点影响,导致最终的分类效果严重偏离全局等情况的发生。其次,将该改进算法用于构造径向基函数神经网络分类器和快速有效地确定隐含层节点径向基函数中心及函数的宽度。最后,通过大量UCI数据集的实验和仿真,验证了改进算法在聚类时间、聚类轮廓系数及聚类正确率等方面具有优越性。同时,大量的仿真实验也证明了基于改进算法构造的RBF分类器具有更高的分类精度。  相似文献   

5.
通过分析以往人工免疫聚类算法的不足之处,提出了一种改进的基于人工免疫聚类与RBF神经网络的混合算法.该算法由两个阶段组成:第一阶段采用人工免疫机制来确定RBF网络隐层的聚类中心的位置和数量;第二阶段建立RBF神经网络,对输入样本数据进行学习、训练,求输出层的权值矩阵W.最后以肝病病证诊断进行仿真,建立基于免疫聚类的RBF网络模型.实验结果表明:该算法用于中医病证诊断的研究是可行的和有效的.  相似文献   

6.
RBF神经网络中心向量的确定是整个网络学习的关键,最常用确定中心向量的方法是K均值聚类算法,对聚类中心的初值选择非常敏感,选择的不好,容易减低网络的训练性能.为克服以上问题,提出了一种熵聚类的方法来自动确定RBF神经网络隐结点的中心个数及其初始值,实现K均值聚类算法的初始化,再用改进的K均值聚类算法调整RBF神经网络的中心和训练宽度.并将上述算法用于函数逼近问题.实验结果表明:改进的算法与常规的K均值聚类算法相比,提高了训练速度和逼近精度.  相似文献   

7.
把径向基函数(RBF)神经网络和网格结合起来,提出了一种能够并行处理数据和便于增量计算的智能聚类方法。介绍了网格聚类原理、RBF神经网络神经元的数量和基函数的选择,并针对数据聚集区域的位置辨识、提高分辨率和计算速度等问题,深入讨论了聚类策略与聚类算法。仿真表明了该方法的有效性。  相似文献   

8.
本文通过aiNet人工免疫网络聚类算法对输入数据集合自适应地确定RBF神经网络隐层中心的数量和初始位置,通过自体免疫遗传算法来训练RBF网络,获得全局最优。最后将本文方法应用到隧洞围岩分类中进行仿真,仿真结果表明该RBF神经网络不仅计算量小,而且精度高,具有很好的泛化能力。  相似文献   

9.
一种新的RBF网络两级学习设计方法   总被引:1,自引:1,他引:0  
为了简化径向基网络结构,构造出良好泛化性能力的网络,提出了一种径向基(RBF)网络的两级学习新设计方法.在下级将正交最小二乘法(OLS)与A-最优设计方法(A-opt)相结合(OLS+A-opt),引入一种基于A-最优设计准则的混合代价函数,同时优化网络模型的逼近性能及模型的充分性,自动构建结构节俭的RBF网络模型;而方法中的关键学习参数A-最优代价系数通过上级粒子群优化方法(PSO)优化获取最佳值.仿真结果表明该方法所设计的RBF网络不仅具有较好的泛化性能,而且也具有良好的模型鲁棒性及充分性,是一种有效的RBF网络设计方法.  相似文献   

10.
林雷  赵紫辉  王洪瑞 《控制工程》2007,14(4):376-379
针对复杂非线性动态系统的模糊建模问题,提出了一种基于在线聚类的模糊建模方法。该方法首先采用在线聚类算法辨识T-S模型的前提参数,然后采用递推最小二乘算法辨识结论参数。根据系统过程中新的数据信息,模糊规则可以自动增加、修改和删除,实现了模型结构和参数的在线辨识和更新。最后将提出的方法应用于Box-Jenkin煤气炉建模和二自由度机器人建模两个例子。仿真结果表明,基于该方法辨识的T-S模糊模型具有很高的精度,而且模型结构简单、建模速度快,便于工程应用。  相似文献   

11.
针对电机保护只在被测参数达到或者超过设定动作阈值才动作,缺乏预测控制能力,设计了一种基于粒子群的径向神经网络。利用小波变换的时频分解能力、优异的奇异检测能力进行故障特征分量的提取;用粒子群算法和径向神经网络配合优化权重,从而使网络收敛快,训练时间短。通过电动机故障进行仿真实验,结果表明PSO-RBF神经网络实现了对故障的识别。  相似文献   

12.
基于PSO的模糊C-均值聚类算法的图像分割   总被引:3,自引:0,他引:3  
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。  相似文献   

13.
基于QPSO算法的RBF神经网络参数优化仿真研究   总被引:8,自引:2,他引:8  
陈伟  冯斌  孙俊 《计算机应用》2006,26(8):1928-1931
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。  相似文献   

14.
PAM是最早提出的k-medoids算法之一,该算法比较健壮,比k-means算法鲁棒性更强,但是PAM对初始值敏感,易陷入局部收敛。利用PSO算法对PAM进行优化,提出一种基于PSO和PAM的聚类方法,充分利用PAM和PSO两者对于不同问题的优势,来不断地更新PAM的聚类中心。通过建立基于熵的聚类有效性函数,对混合聚类算法的性能进行客观评价。从来自UCI的数据的测试结果表明,这种混合聚类的方法有较高的聚类正确率。  相似文献   

15.
针对无线传感器网络中分簇路由算法簇头负载过重,同时为了提高无线传感器网络的能量利用效率,提出了一种基于PSO的非均匀分簇双簇头路由算法。该算法首先通过候选簇头节点与基站距离的远近构造出几何规模不等的簇,然后根据簇的规模引进PSO优化算法最终选择出主簇头与副簇头。主簇头主要负责簇内节点数据的采集跟数据融合,副簇头主要完成簇内及簇间数据转发任务,实现数据的单跳与多跳传输。仿真结果表明,该算法有效的减少了簇头节点的能耗,在很大程度上均衡了整个网络的能耗,实现了网络生存周期的延长。  相似文献   

16.
经验模式分解(EMD)是最近提出的新的图像多尺度分析方法。通过对纹理图像进行二维经验模式分解来提取合适的纹理特征,再采用FCM聚类算法进行分割,实验表明,使用径向基函数在筛分过程中进行插值的效果较优。  相似文献   

17.
普通三层RBF网络已经是一种较好的神经网络,为了进一步提高RBF网络的性能,在普通三层RBF网络的基础上,构建出一种运用PSO算法的自递归RBF网络。学习算法采用以梯度学习算法配合PSO算法对参数进行调整。与采用动量-梯度学习算法,且为结构为三层的RBF网络相比,提的运用PSO算法的自递归RBF网络可以在神经元较少的情况下,具有更好的泛化能力、鲁棒性和准确性。最后通过仿真实验,对算法的有效性进行了验证。  相似文献   

18.
高国栋  林明  许兰 《计算机应用》2017,37(4):980-985
传统基于粒子群优化的粒子滤波(PF)算法(PSOPF)在移动粒子向高似然区域移动的过程中,由于破坏了预测分布,当似然函数具有多峰时,其在具有大计算量的同时滤波性能并没有明显提升。针对该问题,提出了基于似然分布调整的粒子群优化粒子滤波新方法(LA-PSOPF)。在保留预测分布的前提下,运用PSO算法调整似然分布,提高有效粒子数量,进而提高滤波性能;同时引入局部优化策略,缩减参与PSO优化的粒子群规模,从而减少运算量,达到滤波精度与速度的平衡。仿真结果表明,当量测误差较小,似然函数具有多峰值时,改进算法的滤波精度和稳定性都优于PF算法和PSOPF算法,同时运算时间少于PSOPF算法。  相似文献   

19.
改进的粒子群算法对RBF神经网络的优化   总被引:3,自引:0,他引:3       下载免费PDF全文
为了改进神经网络模型结构和参数的设置方法,提出了一种改进的粒子群优化径向基函数(RBF)神经网络的方法。该方法通过动态调整粒子群算法中的惯性权重因子,提高了算法的收敛速度和搜索全局最优值的能力。实验结果表明:基于改进的PSO算法训练的神经网络在函数逼近性能上优于自组织选取中心算法与标准PSO算法,提高了网络泛化能力和优化效果,有效地增强了网络对非线性问题的处理能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号