首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies of the photoluminescence and electroluminescence of multilayer structures with self-assembled Ge(Si)/Si(001) islands are carried out. The luminescence signal from the islands is observable up to room temperature. Annealing of the structures induces a shift of the luminescence peak to shorter wavelengths. The shift is temperature dependent, making possible controllable variations in the spectral position of the luminescence peak of the Ge(Si) islands in the range from 1.3 to 1.55 μm. The enhancement of the temperature quenching of photoluminescence of the islands with increasing annealing temperature is attributed to the decrease in the Ge content in the islands during annealing and, as a result, to a decrease in the depth of the potential well for holes in the islands. The well-pronounced suppression of the temperature quenching of electroluminescence of the Ge(Si) islands in the unannealed structure with increasing pumping current is demonstrated.  相似文献   

2.
The results of investigation of the electroluminescence of multilayer p-i-n structures with Ge(Si)/Si(001) self-assembled islands are presented. The nonmonotonic dependence of the room-temperature intensity of the electroluminescence signal from islands on the Si spacer thickness is revealed. The highest electroluminescence signal intensity is observed for structures with a Si spacer thickness of 15?C20 nm. The significant decrease detected in the electroluminescence signal from the islands in structures with thick Si spacers (>20 nm) is explained by the formation of defect regions in them. The observed decrease in the electroluminescence signal in structures with thin Si layers is associated with a decrease in the Ge fraction in the islands in these structures, which is caused by enhanced Si diffusion into islands with increasing elastic strains in the structure.  相似文献   

3.
The results of a study of the spectral and temporal characteristics of the photoluminescence (PL) from multilayer structures with self-assembled Ge(Si) islands grown on silicon and “silicon-on-insulator” substrates in relation to temperature and the excitation-light wavelength are presented. A substantial increase in island-related PL intensity is observed for structures with Ge(Si) islands grown on silicon substrates upon an increase in temperature from 4 to 70 K. This increase is due to the diffusion of nonequilibrium carriers from the silicon substrate into the active layer with the islands. In this case, a slow component with a characteristic time of ~100 ns appears in the PL rise kinetics. At the same time, no slow component in the PL rise kinetics and no rise in the PL intensity with increasing temperature are observed for structures grown on “silicon-on-insulator” substrates, in which the active layer with the islands is insulated from the silicon substrate. It is found that absorption of the excitation light in the islands and SiGe wetting layers mainly contributes to the excitation of the PL signal from the islands under sub-bandgap optical pump conditions.  相似文献   

4.
The results of studying the photoluminescence of the structures with Ge(Si) self-assembled islands embedded into tensile-strained Si layer are reported. The structures were grown on smooth relaxed Si1 ? x Gex/Si(001) (x = 0.2–0.3) buffer layers. The photoluminescence peak found in the photoluminescence spectra of the studied structures is related to the indirect (in real space) optical transition between the holes localized in the Ge(Si) islands and electrons localized in the tensile-strained Si layers under and above an island. It is shown that one can efficiently control the position of the photoluminescence peak for a specified type of structure by varying the thickness of the strained Si layers. It is found that, at 77 K, the intensity of the photoluminescence signal from the heterostructures with Ge(Si) self-assembled islands contained between the tensile-strained Si layers exceeds by an order of magnitude the intensity of the photoluminescence signal from the GeSi structures with islands formed on the Si(001) substrates.  相似文献   

5.
利用射频磁控溅射方法,制成纳米SiO2层厚度一定而纳米Si层厚度不同的纳米(SiO2/Si/SiO2)/p-Si结构和纳米(SiO2∶Al/Si/SiO2∶Al)/p-Si结构,用磁控溅射制备纳米SiO2∶Al时所用的SiO2/Al复合靶中的Al的面积百分比为1%.上述两种结构中Si层厚度均为1—3nm,间隔为0.2nm.为了对比研究,还制备了Si层厚度为零的样品.这两种结构在900℃氮气下退火30min,正面蒸半透明Au膜,背面蒸Al作欧姆接触后,都在正向偏置下观察到电致发光(EL).在一定的正向偏置下,EL强度和峰位以及电流都随Si层厚度的增加而同步振荡,位相相同.但掺Al结构的发光强度普遍比不掺Al结构强.另外,这两种结构的EL具体振荡特性有明显不同.对这两种结构的电致发光的物理机制和SiO2中掺Al的作用进行了分析和讨论.  相似文献   

6.
The influence of the temperature of secondary annealing, stimulating the formation of optically and electrically active centers, on the erbium ion electroluminescence (EL) at λ≈1.54 μm in (111) Si:(Er,O) diodes has been studied. The diodes were fabricated by the implantation of 2.0 and 1.6 MeV erbium ions at doses of 3×1014 cm−2 and oxygen ions (0.28 and 0.22 MeV, 3×1015 cm−2). At room temperature, the EL intensity in the breakdown mode grows with the annealing temperature increasing from 700 to 950°C. At annealing temperatures of 975–1100°C, no erbium EL is observed in the breakdown mode owing to the formation of microplasmas. The intensity of the injection EL at 80 K decreases with the annealing temperature increasing from 700 to 1100°C. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 10, 2001, pp. 1224–1227. Original Russian Text Copyright ? 2001 by Sobolev, Emel’yanov, Nikolaev.  相似文献   

7.
在 n+ -Si衬底上用磁控溅射淀积掺 Er氧化硅 (Si O2 :Er)薄膜和掺 Er富硅氧化硅 (Six O2 :Er,x>1 )薄膜 ,薄膜经适当温度退火后 ,蒸上电极 ,形成发光二极管 (LED)。室温下在大于 4V反偏电压下发射了来自 Er3+的 1 .5 4μm波长的红外光。测量了由 Si O2 :Er/n+ -Si样品和 Six O2 :Er/n+ -Si样品分别制成的两种 LED,其 Er3+1 .5 4μm波长的电致发光峰强度 ,后者明显比前者强。还发现电致发光强度与 Si O2 :Er/n+ -Si样品和 Six O2 :Er/n+ -Si样品的退火温度有一定依赖关系  相似文献   

8.
The effect of variations in the strained Si layer thicknesses, measurement temperature, and optical excitation power on the width of the photoluminescence line produced by self-assembled Ge(Si) nanoislands, which are grown on relaxed SiGe/Si(001) buffer layers and arranged between strained Si layers, is studied. It is shown that the width of the photoluminescence line related to the Ge(Si) islands can be decreased or increased by varying the thickness of strained Si layers lying above and under the islands. A decrease in the width of the photoluminescence line of the Ge(Si) islands to widths comparable with the width of the photoluminescence line of quantum dot (QD) structures based on direct-gap InAs/GaAs semiconductors is attained with consideration of diffusive smearing of the strained Si layer lying above the islands.  相似文献   

9.
In recent years, quantum dots have been successfully grown by self-assembling processes. For optoelectronic device applications, the quantum-dot structures have advantages such as reduced phonon scattering, longer carrier lifetime, and lower detector noise due to low-dimensional confinement effect. Comparing to traditional optoelectronic III-V and other materials, self-assembled Ge quantum dots grown on Si substrates have a potential to be monolithically integrated with advanced Si-based technology. In this paper, we describe the growth of self-assembled, guided Ge quantum dots, and Ge quantum-dot superlattices on Si. For dot growth, issues such as growth conditions and their effects on the dot morphology are reviewed. Then vertical correlation and dot morphology evolution are addressed in relation to the critical thickness of Ge quantum-dot superlattices. In addition, we also discuss the quantum-dot p-i-p photodetectors (QDIPs) and n-i-n photodetectors for mid-infrared applications, and the quantum-dot p-i-n photodetectors for 1.3-1.55 mum for communications applications. The wavelength of SiGe p-i-p QDIP can be tuned by the size as grown by various patterning methods. Photoresponse is demonstrated for an n-i-n structure in both the mid-infrared and far-infrared wavelength ranges. The p-i-n diodes exhibit low dark current and high quantum efficiency. The characteristics of fabricated light-emitting diode (LED) devices are also discussed, and room-temperature electroluminescence is observed for Ge quantum-dot LED. The results indicate that Ge dot materials are potentially applicable for mid-infrared (8-12 mum) detectors as well as fiber-optic (1.3-1.55 mum) communications.  相似文献   

10.
InGaAs/GaAs and Ge/Si light-emitting heterostructures with active regions consisting of a system of different-size nanoobjects, i.e., quantum dot layers, quantum wells, and a tunneling barrier are studied. The exchange of carriers preceding their radiative recombination is considered in the context of the tunneling interaction of nanoobjects. For the quantum well-InGaAs quantum dot layer system, an exciton tunneling mechanism is established. In such structures with a barrier thinner than 6 nm, anomalously fast carrier (exciton) transfer from the quantum well is observed. The role of the above-barrier resonance of states, which provides “instantaneous” injection into quantum dots, is considered. In Ge/Si structures, Ge quantum dots with heights comparable to the Ge/Si interface broadening are fabricated. The strong luminescence at a wavelength of 1.55 μm in such structures is explained not only by the high island-array density. The model is based on (i) an increase in the exciton oscillator strength due to the tunnel penetration of electrons into the quantum dot core at low temperatures (T < 60 K) and (ii) a redistribution of electronic states in the Δ24 subbands as the temperature is increased to room temperature. Light-emitting diodes are fabricated based on both types of studied structures. Configuration versions of the active region are tested. It is shown that selective pumping of the injector and the tunnel transfer of “cold” carriers (excitons) are more efficient than their direct trapping by the nanoemitter.  相似文献   

11.
Si/SiO2 films have been grown using the two-target alternation magnetron sputtering technique. The thickness of the SiO2 layer in all the films was 8 nm and that of the Si layer in five types of the films ranged from 4 to 20 nm in steps of 4 nm. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structures at a forward bias of 5 V or larger. A broad band with one peak 650–660 nm appears in all the EL spectra of the structures. The effects of the thickness of the Si layer in the Si/SiO2 films and of input electrical power on the EL spectra are studied systematically.  相似文献   

12.
Epitaxial Ge layer growth of low threading dislocation density (TDD) and low surface roughness on Si (1 0 0) surface is investigated using a single wafer reduced pressure chemical vapor deposition (RPCVD) system. Thin seed Ge layer is deposited at 300 °C at first to form two-dimensional Ge surface followed by thick Ge growth at 550 °C. Root mean square of roughness (RMS) of ∼0.45 nm is achieved. As-deposited Ge layers show high TDD of e.g. ∼4 × 108 cm−2 for a 4.7 μm thick Ge layer thickness. The TDD is decreasing with increasing Ge thickness. By applying a postannealing process at 800 °C, the TDD is decreased by one order of magnitude. By introducing several cycle of annealing during the Ge growth interrupting the Ge deposition, TDD as low as ∼7 × 105 cm−2 is achieved for 4.7 μm Ge thick layer. Surface roughness of the Ge sample with the cyclic annealing process is in the same level as without annealing process (RMS of ∼0.44 nm). The Ge layers are tensile strained as a result of a higher thermal expansion coefficient of Ge compared to Si in the cooling process down to room temperature. Enhanced Si diffusion was observed for annealed Ge samples. Direct band-to-band luminescence of the Ge layer grown on Si is demonstrated.  相似文献   

13.
For use in electronic devices, self-assembled Ge islands formed on Si(001) must be covered with an additional Si layer. Chemically vapor deposited Si layers initially grow very rapidly over Ge islands because of the catalytic effect of Ge on the reaction of the Si-containing gas. The edges of the Si features covering Ge “pyramids” are rotated by 45° with respect to the edges of the Ge pyramids because of the different mechanisms orienting the Ge islands and the Si features. When multiple layers of islands are formed, the in-plane ordering of the Ge islands depends on the thickness of the Si interlayer separating the island layers. When selective Si is grown on a patterned Si wafer to form the underlying structure for the Ge islands, the position of the islands is influenced by the detailed shape of the Si near the edges, which in turn depends on the thickness of the selectively deposited Si, the pattern size, and the amount of surrounding oxide.  相似文献   

14.
Si:Er/Si diode structures for observing room-temperature electroluminescence at a wavelength of 1.5 μm are analyzed. The structures were grown by sublimation molecular-beam epitaxy. Some ways to increase the electroluminescence intensity are discussed.  相似文献   

15.
The mechanism for heteroepitaxial growth in the InAs/Si system is studied by reflection highenergy electron diffraction, scanning tunnelling microscopy, and photoluminescence. For certain growth conditions, InAs nanostructures are found to develop on the Si surface immediately during the growth process in the course of molecular beam epitaxy. The range of substrate temperatures that lead to formation of nanosized islands is determined. InAs quantum dots grown on a buffer Si layer with a silicon layer of thickness 50 nm grown on the top produced photoluminescence lines at a wavelength of 1.3 μm at 77K and 1.6 μm at 300 K. Fiz. Tekh. Poluprovodn. 33, 1066–1069 (September 1999)  相似文献   

16.
Systematic features of endotaxial growth of intermediate germanium layers at the bonding interface in the silicon-on-insulator structure consisting of buried SiO2 layer implanted with Ge+ ions are studied in relation to the annealing temperature. On the basis of the results for high-resolution electron microscopy and thermodynamic analysis of the Si/Ge/SiO2 system it is assumed that the endotaxial growth of the Ge layer occurs via formation of a melt due to enhanced segregation and accumulation of Ge at the Si/SiO2 interface. Effect of germanium at the bonding interface on the Hall mobility of holes in silicon layers with nanometer-scale thickness is studied. It is found that the structures including the top silicon layer with the thickness 3–20 nm and incorporating germanium feature the hole mobility that exceeds by a factor of 2–3 the hole mobility in corresponding Ge-free silicon-on-insulator structures.  相似文献   

17.
The results of studying the growth of self-assembled Ge(Si) islands on relaxed Si1?xGex/Si(001) buffer layers (x≈25%), with a low surface roughness are reported. It is shown that the growth of self-assembled islands on the buffer SiGe layers is qualitatively similar to the growth of islands on the Si (001) surface. It is found that a variation in the surface morphology (the transition from dome-to hut-shaped islands) in the case of island growth on the relaxed SiGe buffer layers occurs at a higher temperature than for the Ge(Si)/Si(001) islands. This effect can be caused by both a lesser mismatch between the crystal lattices of an island and the buffer layer and a somewhat higher surface density of islands, when they are grown on an SiGe buffer layer.  相似文献   

18.
We report on the electroluminescence from silicon-based metal–insulator–semiconductor (MIS) diodes with arrays of self-assembled Ge(Si) nanoislands. Aluminum oxide (Al2O3) is used as an insulator material in the MIS contact. Variations in the electroluminescence spectra caused by changing the metal work function are examined. The intense electroluminescence from Ge(Si) nanoislands localized at a distance of 50 nm from the insulator–semiconductor interface is observed at room temperature. The emission spectrum is found to be controlled by choosing the design of the semiconductor structure and the barrier height for injected carriers.  相似文献   

19.
Using a high-resolution scanning reflection electron microscope with multifunctions, we investigate Ge nucleation processes on clean Si(111) surfaces and form Ge islands on them by controlling step arrangements of Si(111) surfaces and by using focused electron beam (EB)-induced surface reactions. It is found that three-dimensional (3D) Ge islands grow selectively at step band areas on the surfaces without growth of the islands at terrace areas. Three-dimensional Ge nanoislands are formed at given points by stimulating the Ge wetting layer using focused electron beams and scanning tunnelling microscopy. Ge nanoislands are also formed by depositing Ge on Si windows in ultrathin SiO2 films and subsequent annealing of the sample. The islands are formed only at the window positions. These results imply new methods for forming Ge quantum dots or nanostructures at given areas.  相似文献   

20.
The effect of growth temperature on photoluminescence is studied for structures with Ge(Si) islands grown on relaxed SiGe/Si(001) buffer layers and confined between strained Si layers. It is shown that, with decreasing growth temperature in the range from 700 to 630°C, the photoluminescence peak associated with the islands shifts to lower energies, which is due to the increase in Ge content in the islands and to suppression of degradation of the strained Si layers. The experimentally observed shift of the photoluminescence peak to higher energies with decreasing temperature from 630 to 600°C is attributed to the change in the type of the islands from domelike to hutlike in this temperature range. This change is accompanied by an abrupt decrease in the average height of the islands. The larger width of the photoluminescence peak produced by the hut islands in comparison with the width of the peak produced by the domelike islands is interpreted as a result of a wider size dispersion of the hutlike islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号