首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The evolution and combustion of H2 jets were investigated in an optically-accessible constant-volume chamber under simulated direct-injection (DI) compression-ignition (CI) engine conditions. The parameters varied include injection pressure (84–140 bar) and ambient temperature (1000–1140 K). A detailed characterization of the injector system and the ensuing jet penetration process is reported first. High-speed schlieren imaging, OH1 chemiluminescence imaging and pressure trace measurements were subsequently used to investigate the auto-ignition and combustion of the H2 jets. The results show that the ignition delay of H2 jets under such conditions is sensitive to ambient temperature variations, but not to injection pressure. Optical imaging reveals that the combustion of H2 jets mostly initiated from a localized kernel, before spreading to engulf the whole jet volume downstream of ignition location. The imaging also indicates that after ignition, the flame recesses back towards the nozzle and appears to attach to the nozzle to form a diffusion flame structure.  相似文献   

2.
In premixed H2/air explosion venting, an under-expansion jet may be caused by the pressure difference between the inside and outside of the explosion vent. Based upon the under-expansion jet, studying the structure of the under-expansion jet flame and the factors influencing its formation is essential to hydrogen safety in explosion venting. This study explored the basic characteristics of the under-expansion jet flame in premixed H2/air explosion venting, and discussed the formation of two under-expansion structures (Mach disk and diamond shock wave) of such jet flames by conducting a premixed H2/air explosion venting experiment. The influences of hydrogen fraction, explosion venting diameter, and duct length on the structure of under-expansion jet flames were evaluated. The results showed that after successful explosion venting, the under-expansion jet flame would be generated when the hydrogen fractions were 30–60 vol.%, and as the hydrogen fractions were 30–50 vol.%, the lengths of the venting duct were 30 and 50 cm. The duration of under-expansion jet flame was the longest when the hydrogen fraction was 40 vol.%. With the explosion venting diameter and hydrogen fraction increased, the spacing between under-expansion jet flame structures (S) increased. However, an increase in duct length led to the attenuation of the S. During the explosion venting, the under-expansion jet caused a pressure imbalance near the explosion vent and high-intensity convection forms on both sides of a jet, which can generate two or more explosions. Therefore, understanding the basic characteristics of under-expansion jet flame can aid the effective development of measures to prevent, mitigate, and protect against premixed H2/air explosions.  相似文献   

3.
The stability characteristics of attached hydrogen (H2) and syngas (H2/CO) turbulent jet flames with coaxial air were studied experimentally. The flame stability was investigated by varying the fuel and air stream velocities. Effects of the coaxial nozzle diameter, fuel nozzle lip thickness and syngas fuel composition are addressed in detail. The detachment stability limit of the syngas single jet flame was found to decrease with increasing amount of carbon monoxide in the fuel. For jet flames with coaxial air, the critical coaxial air velocity leading to flame detachment first increases with increasing fuel jet velocity and subsequently decreases. This non-monotonic trend appears for all syngas composition herein investigated (50/50 → 100/0% H2/CO). OH chemiluminescence imaging was performed to qualitatively identify the mechanisms responsible for the flame detachment. For all fuel compositions, local extinction close to the burner rim is observed at lower fuel velocities (ascending stability limit), while local flame extinction downstream of the burner rim is observed at higher fuel velocities (descending stability limit). Extrema of the non-monotonic trends appear to be identical when the nozzle fuel velocity is normalized by the critical fuel velocity obtained for the single jet cases.  相似文献   

4.
《能源学会志》2020,93(2):508-517
The co-combustion characteristics of coal and microalgae with different blending ratios and under different atmospheres are studied by single particle combustion and thermogravimetric analysis methods. The combustion processes of coal, microalgae and their blends in the single particle combustion experiment have two stages, while the combustion process of coal in the thermogravimetric analysis experiment only has one stage. With the increasing blending ratio of microalgae, flames of volatiles and char of fuels become dimmer and smaller, and the average flame temperature decreases from about 1400 °C to about 1200 °C. The ignition delay time decreases from 200 ms to 140 ms, and the experimental ignition delay time of blended fuels is lower than the theoretical ignition delay time, which demonstrates that the synthetic effect between coal and microalgae exists. To analyze the influence of oxy-fuel atmosphere on the combustion characteristics, the air is replaced by the O2/CO2 atmosphere. The replacement decreases the luminosity, size and average temperature of flames. The average flame temperature of volatiles decreases from 1449.4 °C to 1151.2 °C, and that of char decreases from 1240.0 °C to 1213.4 °C. The replacement increases the ignition delay time of fuel from 80 ms to 100 ms. Increasing mole fraction of O2 in O2/CO2 atmosphere can offset these influences. With the increasing mole fraction of O2, flames of volatiles and char of fuels become brighter and larger, the average flame temperature increases from about 1100 °C to about 1300 °C, while the ignition delay time decreases from 100 ms to 77 ms.  相似文献   

5.
Simultaneous spatially and temporally resolved point measurements of temperature, mixture fraction, major species (H2, H2O, O2, N2), and minor species (OH) concentrations are performed in unswirled (Sg = 0), low swirl (Sg = 0.12), and high swirl (Sg = 0.5) lifted turbulent hydrogen jet diffusion flames into still air. Ultraviolet (UV) Raman scattering and laser-induced predissociative fluorescence (LIPF) techniques are combined to make the multi-parameter measurements using a single KrF excimer laser. Experimental results are compared to the fast chemistry (equilibrium) limit, to the mixing without reaction limit, and to simulations of steady stretched laminar opposed-flow flames. It is found that in the lifted region where the swirling effects are strong, the measured chemical compositions are inconsistent with those calculated from stretched laminar diffusion flames or stretched partially premixed flames. Sub-equilibrium values of temperature, sub-flamelet values of H2O, and super-flamelet values of OH are found in an intermittent annular turbulent brush of the swirled flame but not in the unswirled flame. Farther downstream of the nozzle exit (x/D ≥ 50), swirl has little effect on the finite-rate chemistry.  相似文献   

6.
This paper reports experimental and numerical study of stability and combustion characteristics of premixed oxy-methane flames with hydrogen-enrichment (CH4–H2/O2–CO2 flames) in a model multi-hole burner for clean energy production in gas turbines. The combustor lean blow-out (LBO) limit was presented on an equivalence ratio (Ø) - hydrogen fraction (HF: volumetric fraction of H2 in a mixture of H2+CH4) map spanning over Ø-values of 0.1–1 and HF-values of 0–70% at fixed hole jet velocity and oxygen fraction (OF: volumetric fraction of O2 in a mixture of O2+CO2) of 5.2 m/s and 30%, respectively. The condition of the combustion chamber is assumed to be depicted by the corrugated premixed flame regime. The premixed turbulent flame was modeled using the reaction progress variable flame front topology approach with the Large Eddy Simulation (LES) technique. The recorded combustor stability maps showed great resistance of the micromixer burner technology to flashback, recommending its use for stable gas turbine operation. The results show that H2-enrichment widens the combustor operability limits (higher turndown ratio) by extending the LBO from Ø = 0.45 at HF = 0% down to Ø = 0.15 at HF = 70% with a slight reduction in the heat release factor by 0.1. The high reactivity and higher flame speed of H2 ensures the sustenance of flame at lower equivalence ratios. At high equivalence ratios, H2 addition enhances the reaction rates and makes both the primary and secondary reaction zones shorter and more intense. Increasing HF leads to increase in the Damköhler number (Da) and decrease in both the Karlovitz number (Ka) and flame thickness. The CO emission at the combustor outlet reduced significantly from 241 ppm at HF = 0% to 33.1 ppm at HF = 10%, then it increased back to 364 ppm at HF = 50%.  相似文献   

7.
Several opposed jet flames, produced by a lean H2-air jet opposing a rich or lean C3H8-air jet, are investigated. Spontaneous Raman spectroscopy is used for major species concentration and temperature measurements along the opposed jet centerline. The hot products of the H2-air flame simulate the burnt gases of strong-burning near-stoichiometric reactants as they impinge upon a weak-burning lean or rich hydrocarbon-fueled reactant mix, a situation encountered in stratified charge operation of direct injection spark ignition engines. In addition the H2-air flame hot products facilitate experimental data interpretation through the absence of carbon-bearing species. Good agreement between numerical and experimental data are obtained for a rich (equivalence ratio, φ = 1.25) C3H8-air jet versus a lean (φ = 0.4) H2-air jet. Two lean C3H8-air jets (φ = 0.64 or 0.60), versus the φ = 0.4 H2-air jet, are also investigated. For both of these flames, the amount of CO2 production strongly depends upon φ, with the φ = 0.64 flame having a peak CO2 mole fraction an order of magnitude higher than for the φ = 0.60 flame, and the C3H8 flames burning either as a normal flame (high CO2) or as a “negative flame speed” flame producing little CO2 and then only through diffusion of C3H8 into the hot products jet. The numerically predicted and experimental CO2 profiles agree well for the positive flame speed flame, but the large discrepancy between predicted and measured peak CO2 in the negative flame speed flame suggests modeling improvements are needed for this type of flame.  相似文献   

8.
The elevated temperature of hydrogen combustion increases the formation of thermal NOx. Moderate or intense low oxygen dilution (MILD) combustion is known to reduce NOx emissions and increase thermal efficiency. Pressure is often also used for increasing thermal efficiency. The impact that pressure has on fluid dynamics and chemical kinetics is especially relevant in MILD combustion conditions. Hydrogen jet flames issuing into a hot and vitiated coflow were imaged using OH1 chemiluminescence at different pressures (1–7 bar) and oxygen levels (3–9% by vol.). Laminar flame simulations complemented the experiments. The observed mean radial OH1 width increased with increased pressure, but only at O2 content less than 9%, suggesting that pressure has greater influence on kinetics when oxygen is reduced. The integrated OH1 signal strength remained constant at 3% coflow O2, despite an apparent increase in flame width, suggesting a spatial broadening of the flame with pressure. Numerical results indicate that at 3–6% O2, conditions for MILD combustion of H2 are met across a wide range of strains and pressures, supporting the experimental observations for 3% O2.  相似文献   

9.
Oxy-steam combustion is a potential new-generation option for CO2 capture and storage. The ignition and combustion characteristics of single coal and biomass particles were investigated in a flow tube reactor in O2/N2 and O2/H2O at various oxygen concentrations. The ignition and combustion processes were recorded using a CCD camera, and the two-color pyrometry was used to estimate the volatile flame temperature and char combustion temperature. In O2/N2 and O2/H2O, coal ignites heterogeneously at <O2> = 21–50%. In O2/N2, biomass ignites homogeneously at <O2> = 21–30%, while it ignites heterogeneously at <O2> = 40–50%. In O2/H2O, biomass ignites homogeneously at <O2> = 21–50%. With increasing oxygen concentration, the ignition delay time, volatile burnout time and char burnout time are decreased, and the volatile flame temperature and char combustion temperature are increased. At a certain oxygen concentration in both atmospheres, the ignition delay time, volatile burnout time and char burnout time of biomass are shorter than those of coal. Moreover, biomass has a higher volatile flame temperature but a lower char combustion temperature than coal. The ignition delay time, volatile burnout time and char burnout time in O2/H2O are lower than those in O2/N2 for coal and biomass. The presence of H2O can improve the combustion rates of coal and biomass. The volatile flame shows a lower temperature in O2/H2O than in O2/N2 at <O2> = 21–50%. The char combustion shows a lower temperature in O2/H2O than in O2/N2 at <O2> = 21–30%, while this behavior is switched at <O2> = 40–50%. The results contribute to the understanding of the ignition and combustion characteristics of coal and biomass in oxy-steam combustion.  相似文献   

10.
The behavior of ignition and flame-holding of various plasma torches in supersonic flow were numerically investigated. To understand the role of radicals involved in the plasma jet (PJ), three kinds of PJs (O2, N2, and Ar) were simulated. For fuel injection both upstream and downstream of the PJ, the three PJs showed no difference with respect to the location and the behavior of ignition. Ignition occurred at the upper part of the rear jet, where the front jet turned upward because of passing through the interaction shock wave collided with the rear jet first. Differences appeared in the behavior of flame-holding after ignition in the case of upstream fuel injection. The flames ignited by the N2 PJ and Ar PJ blew out, but the one ignited by the O2 PJ was held by the O2 PJ itself. This result suggests that the local equivalence ratio is an important factor for flame-holding by the PJ. Moreover, flame propagation in the merged low Mach number region between the PJ and the H2 jet was observed in cases of the N2 PJ and the O2 PJ. On the other hand, there was no significant difference in three PJs in the behavior of the flame in the case of downstream fuel injection. In this case, reactions occurred mainly along the thin mixing layer of the PJ and the H2 jet. The performance of the Ar PJ was worse than those of the O2 PJ and the N2 PJ for all simulations. Therefore, radicals included in the PJ enhanced the combustion reaction and enlarged the combustion region.  相似文献   

11.
In this work, extensive chemical kinetic modeling is performed to analyze the combustion and emissions characteristics of premixed NH3/CH4–O2/N2/H2O2 mixtures at different replacement percentages of air with hydrogen peroxide (H2O2). This work is comprehensively discusses the ignition delay time, flame speed, heat release rate, and NOx & CO emissions of premixed NH3/CH4–O2/N2/H2O2 mixtures. Important intermediate crucial radicals such as OH, HO2, HCO, and HNO effect on the above-mentioned parameters is also discussed in detail. Furthermore, correlations were obtained for the laminar flame speed, NO, and CO emissions with important radicals such as OH, HO2, HCO, and HNO. The replacement of air with H2O2 increases flame speed and decreases the ignition delay time of the mixture significantly. Also, increases the CO and NOx concentration in the products. The CO and NOx emissions can be controlled by regulating the H2O2 concentration and equivalence ratios. Air replacement with H2O2 enhances the reactions rate and concentration of intermediate radicals such as O/H, HO2, and HCO in the mixture. These intermediate radicals closely govern the combustion chemistry of the NH3/CH4– O2/N2/H2O2 mixture. A linear correlation is observed between the flame speed and peak mole fraction of OH + HO2 radicals, and 2nd degree polynomial correlation is observed for the peak mole fraction of NO and CO with HNO + OH and HCO + OH radicals, respectively.  相似文献   

12.
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290, 80 and 35 K with different nozzle diameters and mass flow rates have been investigated. Sampling probe method and laser PIV techniques have been used to evaluate the distribution of hydrogen concentration and flow velocity. High-speed photography combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the flame propagates in both directions, up- and downstream of the jet flow if hydrogen concentration is >11%, whereas in case [H2] < 11%, the flame propagates only downstream. This means that at normal temperature the flame is able to accelerate effectively only if the expansion ratio σ of the H2-air mixture is higher than a critical value σ* = 3.75 defined for a closed geometry.  相似文献   

13.
Characteristics of high-pressure hydrogen jet flames resulting from ignition of hydrogen discharge during the bonfire test of composite hydrogen storage vessels are studied. Firstly, a 3-D numerical model is established based on the species transfer model and SST k − ω turbulence model to study the high-pressure hydrogen jet flow. It is revealed that under-expanded jets are formed after the high-pressure hydrogen discharging from the vessel. Secondly, the mathematical methods are adopted to study the high-pressure hydrogen jet flames. The effects of pressure, initial temperature and the nozzle diameter on the jet flames are investigated. The results show that the jet flame length increases with the increase of discharge pressure, but decreases with the increase of nozzle diameter and temperature difference between the filling hydrogen temperature and the environment temperature. Finally, the simulation models are established to study the characteristics of hydrogen jet flames in an open space. The effects of barrier walls on the distribution of jet flames are also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around.  相似文献   

14.
Important role of chemical interaction in flame extinction is numerically investigated in downstream interaction among lean (rich) and lean (rich) premixed as well as partially premixed H2- and CO-air flames. The strain rate varies from 30 to 5917 s−1 until interacting flames cannot be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames are survived only within two islands in the flame stability map where partially premixed mixture consists of rich H2-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. It is found that hydrogen penetrated from H2-air flame (even at lean flame condition) participates in CO oxidation vigorously due to the high diffusivity such that it modifies the slow main reaction route CO + O2 → CO2 + O into the fast cyclic reaction route involving CO + OH → CO2 + H. These chemical interactions force even rich extinction boundaries with deficient reactant Lewis numbers larger than unity to be slanted at high strain rate. Appreciable amount of hydrogen in the side of lean H2-air flame also oxidizes the CO penetrated from CO-air flame, and this reduces flame speed of the H2-air flame, leading to flame extinction. At extremely high strain rates, interacting flames are survived only by a partially premixed flame such that it consists of a very rich H2-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker H2- and CO-air flames are parasite on the stronger diffusion flame such that it can lead to flame extinction in the situation of weakening the stronger diffusion flame. Important role of chemical interaction in flame extinction is discussed in detail.  相似文献   

15.
The aim of this study is to find a reduced mechanism that accurately represents chemical kinetics for lean hydrogen combustion at elevated pressures, as present in a typical gas turbine combustor. Calculations of autoignition, extinction, and laminar premixed flames are used to identify the most relevant species and reactions and to compare the results of several reduced mechanisms with those of a detailed reaction mechanism. The investigations show that the species OH and H are generally the radicals with the highest concentrations, followed by the O radical. However, the accumulation of the radical pool in autoignition is dominated by HO2 for temperatures above, and by H2O2 below the crossover temperature. The influence of H2O2 reactions is negligible for laminar flames and extinction, but becomes significant for autoignition. At least 11 elementary reactions are necessary for a satisfactory prediction of the processes of ignition, extinction, and laminar flame propagation under gas turbine conditions. A 4-step reduced mechanism using steady-state approximations for HO2 and H2O2 yields good results for laminar flame speed and extinction limits, but fails to predict ignition delay at low temperatures. A further reduction to three steps using a steady-state approximation for O leads to significant errors in the prediction of the laminar flame speed and extinction limit.  相似文献   

16.
Measurements of temperature and major species concentrations, based on the simultaneous line-imaged Raman/Rayleigh/CO-LIF technique, are reported for piloted jet flames of CH4/H2 fuel with varying amounts of partial premixing with air (jet equivalence ratios of ?j = 3.2, 2.5, 2.1 corresponding to stoichiometric mixture fraction values of ξst = 0.35, 0.43, 0.50, respectively) and varying degrees of localized extinction. Each jet flame is operated at a fixed and relatively high exit Reynolds number (60,000 or 67,000), and the probability of localized extinction is increased in several steps by progressively decreasing the flow rate of the pilot flame. Dimensions of the piloted burner, originally developed at Sydney University, are the same as for previous studies. The present measurements complement previous results from piloted CH4/air jet flames as targets for combustion model calculations by extending to higher Reynolds number, including more steps in the progression of each flame from a fully burning state to a flame with high probability of local extinction, and adding the degree of partial premixing as an experimental parameter. Local extinction in these flames occurs close to the nozzle near a downstream location of four times the jet exit diameter. Consequently, these data provide the additional modeling challenge of accurately representing the initial development of the reacting jet and the near-field mixing processes.  相似文献   

17.
Under-expanded hydrogen jet has characteristic shock structure immediately downstream of the nozzle exit. The shock structure depends on the ratio pEX/pA, i.e. the ratio of nozzle exit to ambient pressure, and the distributions of velocity and concentration in an under-expanded hydrogen jet depend on characteristics of the shock structure. Therefore, the shock structure should affect the blow-off behaviour of under-expanded hydrogen jet flame. Since this issue has not been investigated in detail, this study aims to close this knowledge gap. The effect of changes in shock structure on lift-off length and blow-off conditions for non-premixed turbulent hydrogen free jet flame has been experimentally investigated. The shock structure was varied by using three types of nozzles: convergent, straight and divergent nozzles. Inlet diameters of nozzles change from 0.31 to 1.04 mm and outlet diameters from 0.34 to 1.7 mm. The static pressure and the ratio of cross-section area at the nozzle inlet to that at the outlet were varying parameters in this study. Hydrogen was horizontally spouted through a nozzle to atmosphere. The maximum static pressure in a nozzle was 13.2 MPa. The experiments revealed that when the hydrogen jet had sequential shock cell structures, which occurred in the range of pEX/pA smaller than 2.45, a higher mass flow rate of hydrogen was needed for the stabilization of a jet flame than that for pEX/pA larger than 2.45 and that when closed to the ideal expansion (pEX/pA = 1), the mass flow rate for stable flame became maximum. In addition, it was observed that the lift-off length of stable flames followed with sequential shock cell structures were almost the same when the minimum cross-section area of used nozzles was constant. However, when hydrogen jet had a shock structure with single Mach disk, the lift-off lengths and the minimum mass flow rate required for the stable jet flame were decreasing with the decrease of the cross-sectional area ratio of the nozzle exit to inlet.  相似文献   

18.
Experiments on shock waves propagation, spontaneous ignition, and flame development during high-pressure hydrogen release through tubes with symmetrical obstacles (O1-1) and asymmetrical obstacles (O1-2) are conducted. The obstacle's side is triangular with a length of 4 mm, a height of 3.6 mm, and its width is 15 mm. In the experiments, a reflected shock wave generates and propagates both upstream and downstream when the leading shock wave encounters the obstacle. At the same burst pressure, the reflected shock wave intensity in tube O1-1 is significantly greater than that in tube O1-2. Moreover, the presence of obstacles in the tube can induce spontaneous ignition. The minimum burst pressures for spontaneous ignition for tubes O1-1 and O1-2 are 2.84 MPa and 3.28 MPa respectively, lower than that for the smooth tube. Furthermore, both the initial ignition position and ignition time are greatly advanced in obstruction tubes, mainly affected by obstacle positions and burst pressures. Finally, the flame separation process near the obstacle is observed. After passing the obstacle, the flames grow rapidly in radial and axial directions on the tube sidewalls. And at the same burst pressure, the flame convergence time in tube O1-2 is usually longer than that in tube O1-1.  相似文献   

19.
The spatial distributions of the hydroxyl radical (OH), formaldehyde (H2CO), and temperature imaged by laser diagnostic techniques are presented using a Jet in Hot Coflow (JHC) burner. The measurements are of turbulent nonpremixed ethylene jet flames, either undiluted or diluted with hydrogen (H2), air or nitrogen (N2). The fuel jet issues into a hot and highly diluted coflow at two O2 levels and a fixed temperature of 1100 K. These conditions emulate those of moderate or intense low oxygen dilution (MILD) combustion. Ethylene is an important species in the oxidation of higher-order hydrocarbon fuels and in the formation of soot. Under the influence of the hot and diluted coflow, soot is seen to be suppressed. At downstream locations, surrounding air is entrained which results in increases in reaction rates and a spatial mismatch between the OH and H2CO surfaces. In a very low O2 coflow, a faint outline of the reaction zone is seen to extend to the jet exit plane, whereas at a higher coflow O2 level, the flames visually appear lifted. In the flames that appear lifted, a continuous OH surface is identified that extends to the jet exit. At the “lift-off” height a transition from weak to strong OH is observed, analogous to a lifted flame. H2CO is also seen upstream of the transition point, providing further evidence of the occurrence of preignition reactions in the apparent lifted region of these flames. The unique characteristics of these particular cases has led to the term transitional flame.  相似文献   

20.
This paper reports a numerical study on the combustion and extinction characteristics of opposed-jet syngas diffusion flames. A model of one-dimensional counterflow syngas diffusion flames was constructed with constant strain rate formulations, which used detailed chemical kinetics and thermal and transport properties with flame radiation calculated by statistic narrowband radiation model. Detailed flame structures, species production rates and net reaction rates of key chemical reaction steps were analyzed. The effects of syngas compositions, dilution gases and pressures on the flame structures and extinction limits of H2/CO synthetic mixture flames were discussed. Results indicate the flame structures and flame extinction are impacted by the compositions of syngas mixture significantly. From H2-enriched syngas to CO-enriched syngas fuels, the dominant chain reactions are shifting from OH + H2→H + H2O for H2O production to OH + CO→H + CO2 for CO2 production through the key chain-branching reaction of H + O2→O + OH. Flame temperature increases with increasing hydrogen content and pressure, but the flame thickness is decreased with pressure. Besides, the study of the dilution effects from CO2, N2, and H2O, showed the maximum flame temperature is decreased the most with CO2 as the dilution gas, while CO-enriched syngas flames with H2O dilution has highest maximum flame temperature when extinction occurs due to the competitions of chemical effect and radiation effect. Finally, extinction limits were obtained with minimum hydrogen percentage as the index at different pressures, which provides a fundamental understanding of syngas combustion and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号