首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel three-dimensional (3D) core-shell nanostructure decorated with plasmonic Au nanoparticles (NPs) was prepared for photoelectrochemical water splitting. In the new nanostructure, ZnO nanorods (NRs) are perpendicular to ZnO nanosheets (NSs), and the ZnO NSs-NRs are coated with a thin TiO2 shell formed by liquid phase deposition. The plasmonic Au NPs were formed in situ on the surface of ZnO NSs-NRs@TiO2 by thermal reduction. A thin TiO2 shell and uniformly distributed Au NPs were successfully obtained. The photoconversion efficiency and photocurrent density of the 3D ZnO NSs-NRs@TiO2-Au nanostructure respectively reached 0.48% and 1.73 mA cm−2 at 1.23 V vs. reversible hydrogen electrode, 4.80 and 4.33 times higher than those of ZnO NSs, respectively. The thin TiO2 shell effectively promoted charge separation, while the surface plasmon resonance effects of the Au NPs improved the photocurrent density. The findings suggest that the 3D ZnO NSs-NRs@TiO2-Au nanostructure is a promising photoanode for photoelectrochemical water splitting.  相似文献   

2.
An integrated solar water splitting tandem cell without external bias was designed using a FeOOH modified TiO2/BiVO4 photoanode as a photoanode and p-Cu2O as a photocathode in this study. An apparent photocurrent (0.37 mA/cm2 at operating voltage of +0.36 VRHE) for the tandem cell without applied bias was measured, which is corresponding to a photoconversion efficiency of 0.46%. Besides, the photocurrent of FeOOH modified TiO2/BiVO4–Cu2O is much higher than the operating point given by pure BiVO4 and Cu2O photocathode (∼0.07 mA/cm2 at +0.42 VRHE). Then we established a FeOOH modified TiO2/BiVO4–Cu2O two-electrode system and measured the current density-voltage curves under AM 1.5G illumination. The unassisted photocurrent density is 0.12 mA/cm−2 and the corresponding amounts of hydrogen and oxygen evolved by the tandem PEC cell without bias are 2.36 μmol/cm2 and 1.09 μmol/cm2 after testing for 2.5 h. The photoelectrochemical (PEC) properties of the FeOOH modified TiO2/BiVO4 photoanode were further studied to demonstrate the electrons transport process of solar water splitting. This aspect provides a fundamental challenge to establish an unbiased and stabilized photoelectrochemical (PEC) solar water splitting tandem cell with higher solar-to-hydrogen efficiency.  相似文献   

3.
Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.  相似文献   

4.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

5.
A cascade structure of TiO2/CdS/CdSe semiconductor heterojunction is synthesized using a three-step technique of facile hydrothermal growth for the enhancement of the photoelectrochemical performances. The optical and photoelectrochemical properties controlled by the deposition processing parameters have been investigated. It is shown that the patterns of semiconductor heterojunction enlarge the absorption range of solar spectra, and improve the properties of the photogenerated charge carriers describing separation and transportation, and reduce the interface resistance between the photoelectrode and electrolyte comparing with the pure TiO2 and CdS-decorated TiO2 nanorod array photoanodes. The higher photocurrent density and photoconversion efficiency are up to 4.23 mA cm−2 and 4.2%, which are the 4.1 and 25.3 times superior than that of the pure TiO2 photoanode. The hydrothermal growth time increment of CdSe yields greater photoelectrochemical water splitting performances. The underlying physics mechanisms have been discussed based on forming a type-Ⅱ energy band alignment structure.  相似文献   

6.
CdS has been widely used to modify TiO2-based photoanodes for photoelectrochemical (PEC) water splitting. Due to the poor interface contact between chalcogenides and oxides, however, such CdS modified TiO2 materials usually exhibit inefficient separation and transport of charges, leading to an unsatisfactory efficiency during the PEC water splitting process. Addressing this issue, we herein report a CdS/TiO2 nanotube array (CdS/TNA) photoanode that was fabricated through a successive ion layer absorption and reaction (SILAR) method with an additional subsequent annealing. This post-annealing process is essential to enhance the interface contact between the CdS and the TNAs, resulting in an accelerated transfer of photogenerated electrons from the CdS to the TNAs. In addition, the post-annealing also improves the light absorption capability of the CdS/TNA photoanode. The simultaneous enhancement of charge transport and light absorption provided by the post-annealing is essential for improving the PEC performance of the CdS/TNA photoanode. The CdS/TNA photoanode obtained by this strategy exhibits a much enhanced PEC performance in water splitting, and its photocurrent density and solar-to-hydrogen conversion efficiency could reach 4.56 mA cm−2 at 1.23 V vs. reversible hydrogen electrode and 5.61%, respectively. This simple but effective route can provide a general strategy for obtaining high-performance oxide-based photoelectrodes.  相似文献   

7.
BiVO4 is a promising photoanode material for water splitting due to its substantial absorption of solar light as well as favorable band edge positions. However, the poor water oxidation kinetics of BiVO4 results in its insufficient photocurrent density. Herein, we demonstrate the use of CoP nanoparticles for facile surface modification of nanoporous BiVO4 photoanode in potassium borate buffer solution (pH 9.0), which can generate a tremendous cathodic shift of ~430 mV in the onset potential for photoelectrochemical water oxidation. In addition, a remarkable photocurrent density of 4.1 mA cm?2 is achieved at 1.23 V vs. RHE under AM 1.5G illumination. The photoelectrochemical measurement using sodium sulfite as a hole scavenger clearly shows that the greatly improved performances are attributed to the efficient suppression of interfacial charge recombination through loading of CoP catalyst. Moreover, the maximum surface charge injection yield can reach >81% at 1.23 V vs. RHE and the maximum IPCE of CoP/BiVO4 can reach 75.8% at 420 nm, suggesting the potential application of CoP-modified BiVO4 photoanode for overall solar water splitting in cost-effective tandem photoelectrochemical cells.  相似文献   

8.
Due to its poor bulk charge separation efficiency, the photoelectrochemical (PEC) performance of pristine hematite prepared directly from an electrodeposited Fe film is limited. Au-modification of hematite via a simple immersion method improves the PEC performance two-fold to 0.31 mA cm−2. The Au nanoparticles deposited from HAuCl4 act as plasmonic photosensitizers and electron collectors to improve the light absorption and bulk charge separation efficiency of the photoanode. In addition, the increase in the (110) plane and specific surface area induced by HAuCl4 enhances the bulk charge separation efficiency. After further modification with Ti, the photocurrent response of the resulting Ti/Au/α-Fe2O3 photoanode improves to 0.51 mA cm−2; this increase is attributed to its increased light absorption, bulk charge separation efficiency (ηbulk), and surface charge injection efficiency (ηsurface). In this work, the effect of Au and Ti on the crystalline structure, morphology and PEC performance of the novel electrodeposited hematite photoanode are investigated by systematical characterization.  相似文献   

9.
The mismatched interfaces of heterojunction usually have lots of defects, deriving in recombination of generated electron-hole pairs. On the other hand, homojunction interfaces are considered to be beneficial to the separation of charge carriers due to the similar characteristics in two sides of homojunction. TiO2 have rutile and anatase two typical photoactive phases in nature. In this work, TiO2-rutile/anatase (TiO2-R/A) homojunction photoanode is fabricated by in situ growth of anatase TiO2 on TiO2-R surface. By contrast with TiO2-rutile/rutile (TiO2-R/R) photoanode, TiO2-R/A displays higher photocurrent density (1.70 mA cm?2 at 0.6 V vs. SCE). Deep insight into the mechanism suggests that TiO2-R/A homojunction has intense band bending and enhanced surface area, which facilitate the charge separation and transmission. This study offers some novel insights to design and fabricate semiconductors photoanodes for highly efficient photocatalytic reactions.  相似文献   

10.
Developing novel photoanodes with high efficiency for photoelectrochemical (PEC) water splitting has become the key to solar energy conversion and storage realm. Herein, 3D worm-like bismuth vanadate (BiVO4) is grafted on 2D thin tungsten trioxide (WO3) underlayer by electrodeposition to form mixed–dimensional structured photoanode, resulting in significant improvement of the photocatalytic performance and the charge separation efficiency. Characterization results prove that the mixed–dimensional structured can boost the photocatalytic activity by suppressing back reaction and charge recombination of the bulk BiVO4. Simultaneously, the electrical conductivity of photoanode can be increased by W6+ doping. Furthermore, a robust catalyst NiCo2Ox is coated onto the surface of WO3/BiVO4 photoanode, exhibiting a desirable photocurrent of 3.85 mA cm?2 at 1.23 V vs. RHE and an excellent stability over 3 h. Both the excellent photocurrent density and great operational stability of this 2D/3D WO3/BiVO4 photoanode make it a promising material for practical applications.  相似文献   

11.
Herein, we report the fabrication of nanocrystals activated 1D TiO2 nanorods heterostructure photoanode with top-open vertical photoanode structure by hydrothermal and SILAR method. The vertical nanorod heterostructure could effectively manifest the interface with electrolyte and photoanode for dynamic water oxidation. Furthermore, thermodynamically stable TiO2 nanorod and its conduction band alignment with CdS and CdSe nanocrystals uphold the charge separation and culminate the photocurrent density to 2.01 mA cm?2 at 1.23 V RHE. The decoration of CdS and CdSe co-crystals on TiO2 exhibited a significantly enhanced photoresponse and clear evidence of the negative shift of onset-potential with a five-fold increment of solar to hydrogen generation.  相似文献   

12.
In order to enhance the photoelectrochemical (PEC) performance of tungsten oxide (WO3), it is critical to overcome the problems of narrow visible light absorption range and low carrier separation efficiency. In this work, we firstly prepared the 2D plate-like WO3/CuWO4 uniform core-shell heterojunction through in-situ synthesis method. After modification with the amorphous Co-Pi co-catalyst, the ternary uniform core-shell structure photoanode achieved a photocurrent of 1.4 mA/cm2 at 1.23 V vs. RHE, which was about 6.67 and 1.75 times higher than that of pristine WO3 and 2D uniform core-shell heterojunction, respectively. Furthermore, the onset potential of 2D WO3/CuWO4/Co-Pi core-shell heterojunction occurred a negatively shifts of about 20 mV. Experiments illuminated that the enhanced PEC performance of WO3/CuWO4/Co-Pi photoanode was attributed to the broader light absorption, reduced carrier transfer barrier and increased carrier separation efficiency. The work provides a strategy of maximizing the advantages of core-shell heterojunction and co-catalyst to achieve effective PEC performance.  相似文献   

13.
ZnO/CdS photoanode with an excellent photoelectrochemical (PEC) performance for water splitting to produce hydrogen, but its practical application is seriously hindered owing to the photocorrosion induced by photoholes on the surface of CdS. Herein, a 3D cross-linked heterostructure ZnO/CdS/BiOI nanorod arrays (NRAs) has been prepared by a simple solvothermal strategy. Under visible light illumination (λ > 420 nm), the ZnO/CdS/BiOI NRAs photoanode shows an excellent PEC activity and generates a photocurrent density of 9.12 mA cm−2 at 1.1 V vs. RHE, which is 1.8 times higher than that of the ZnO/CdS NRAs photoanode in the alkaline electrolyte. Furthermore, the photoanode achieves a high photo conversion efficiency of 3.49% and a long-time stability over 6000 s. It is proposed that the BiOI nanosheets not only serve as protecting layer to restrain the photocorrosion of CdS, but also facilitate the charge separation in CdS by the virtue of the p-n junction formed between CdS and BiOI.  相似文献   

14.
The catalytic reactivity and photoactivity of WO3 and BiVO4 oxide semiconductors have general obstacles as electrodes in emergent photo-electrochemical (PEC) hydrogen evolution applications. The present work comprises the integration of photocatalyst with wide visible photon absorption material which is vital for hydrogen evolution in photo-electrocatalytic water splitting. Herein, the 1D WO3 NWs have been integrated with stable water oxidation photocatalysts of BiVO4 and Bi2S3 as a photoanode (Bi2S3/BiVO4/WO3) for photoelectrochemical hydrogen evolution reactions. The morphological variations in the Bi2S3/BiVO4/WO3 heterostructure manifest catalytic activity and rapid charge transfer characteristics owing to band alignment and a wide range of visible photon absorption. The optimized Bi2S3/BiVO4/WO3 multidimensional photoanode accomplishes a superior photocurrent density of 1.52 mA/cm2, a seven-fold higher than pristine WO3 photoanode counterpart (0.2 mA/cm2) at 1 V vs. RHE. A prodigious lowest onset potential of ?0.01 V vs. RHE) has been achieved which enables very high solar to hydrogen conversion. The photoelectrode with entangled morphology such as nanosheets, nanocrystals and nanorods expanded their surface to volume ratio having enhanced catalytic performance. The hybrid photoanodes have demonstrated the lowest charge transfer resistance of 360 Ohm/cm2 with a 7-fold rise in hydrogen evolution performance. The resultant triadic Bi2S3/BiVO4/WO3 heterostructure appeared to be an emerging stable photo-electro catalyst for hydrogen evolution applications.  相似文献   

15.
Functionalization of TiO2 nanoparticles with silane coupling agents was investigated aimed at low-temperature photoelectrode manufacturing for solar driven water splitting application. Different silanes were grafted on the surface of TiO2 in toluene solvent under mild condition. The electrodes were prepared with spin coating by dispersing functionalized particles in DMAc onto FTO glass and dried under vacuum atmosphere at low temperature. UV–Vis spectroscopy of TiO2 powder and its electrodes was studied, and it was found that the spectrum of the modified TiO2 slightly shifted to higher wavelengths. The electrode prepared with functionalized TiO2 showed photocurrent density of up to 0.14 mA cm−2 compared to 0.04 mAcm−2 for pristine TiO2 at 1.23 V, in the water oxidation reaction. The increase in photocurrent density was due to better binding of the TiO2 particles to the substrate resulting in better charge collection observed under SEM. To enhance the photoelectrochemical efficiency, heat treatment was performed and 300 °C was found to be the best heat treatment temperature. The incident photon to current efficiency measurement exhibited an external quantum efficiency up to 4.9% for this heat-treated electrode. Mott-Schottky was plotted to examine the flat band potential. The result showed that the modification resulted in a decrease in the flat band potential suggesting that the charge recombination loss is lower compared to neat TiO2 electrode.  相似文献   

16.
Developing low-cost semiconductor photoanode toward efficient and stable oxygen evolution reaction (OER) is highly desirable for photoelectrochemical (PEC) water splitting. Herein, nanoparticulate titanium dioxide (TiO2) electrodes were prepared using Degussa P25 powders by spin-coating method. The effects of annealing conditions on the PEC performance of the nanoparticulate TiO2 photoanode was systematically investigated including temperature, annealing time and atmosphere. The results demonstrate that the TiO2/fluorine-doped tin oxide substrates (FTO/TiO2) electrode annealed at argon (Ar) atmosphere under 450 °C shows the highest PEC performance. The photocurrent density of FTO/TiO2 annealed in Ar for only 0.5 h reached to 120 μA/cm2 at 0.3 V vs. Hg/HgO which is about 10 times higher than that of the unannealed one. The X-ray photoelectron spectroscopy (XPS) results show the thermal treatment can produce oxygen vacancies on the surface of TiO2 which reduce the recombination of photogenerated electron-hole pairs and expanding the visible light absorption by introducing defective energy levels. The electrochemical impedance spectroscopy (EIS) approves that appropriate annealing treatment can effectively enhance the electron conductivity resulting in low charge transfer resistance. All these factors contribute to improving the PEC activity of TiO2 photoanode.  相似文献   

17.
We report on the enhanced photoelectrochemical water splitting of hybrid ZnS/ZnO core-shell nanorod arrays functionalized with Bi2S3 nanosheets as photoanode. The ZnO nanorod arrays were prepared by a facile hydrothermal approach and sulphurized to form ZnS shell. Subsequently porous Bi2S3 nanosheets were arbitrarily decorated on the nanorod arrays by ionic adsorption and reaction method. Substantial enhancement in photocurrents with twofold increment is observed for hybrid photoanode compared to pristine counterparts. The structural and morphological properties of nano hybrid Bi2S3/ZnS/ZnO samples were analyzed by field emission scanning electron microscopy and X-ray diffraction. The higher wavelength shift in the absorption edge of Bi2S3/ZnS/ZnO photocatalyst was observed in diffuse reflectance UV–Visible spectra. The low temperature photoluminescence and impedance spectra of Bi2S3/ZnS/ZnO photoanode confirm that Bi2S3 functionalization reduces the recombination of electron–hole pair and facilitates barrier free charge transfer. The Bi2S3/ZnS/ZnO photoanode device exhibits photocurrent density of 220 μA/cm2 at 0.2 V vs. Ag/AgCl under the electrolyte solution at pH ~10.8. The resultant hybrid photoanode withhold good stability and maintain the facile charge carrier generation and separation. Bi2S3 topological nanosheets are responsible for the absorption of complete visible photons while ZnS/Bi2S3 inter-junction provides the robust electron-hole pair separation at their interface due to infiltration pathway. The photoactive hybridization of Bi2S3/ZnS/ZnO provokes the enhanced donor charge density for efficient hydrogen evolution reaction.  相似文献   

18.
In this paper, novel TiO2/CeO2 core/shell heterojunction nanorod (NR) arrays were synthesized as photoanode for photoelectrochemical (PEC) water splitting via a simple and facial two-step hydrothermal approach. This synthesis route can obtain different amount of CeO2 nanoparticles by controlling the hydrothermal time and eventually achieve uniform TiO2/CeO2 core/shell nanostructures. The uniform TiO2/CeO2 core/shell heterojunction nanoarrays exhibit a markedly enhanced photocurrent density of 5.30 mA·cm?2 compared to that of pristine TiO2 NR 1.79 mA·cm?2 at 1.23 V vs. RHE in 1 M KOH solution. The superior PEC performance of the TiO2/CeO2 core/shell heterojunction is primarily due to much enhanced visible light absorption and appropriate gradient energy gap structure. This work not only offers the synthesis route for the novel TiO2/CeO2 core/shell heterojunction, but also suggests that this new core/shell heterojunction has a great potential application for efficient PEC water splitting devices.  相似文献   

19.
Hydrogen evolution through photoelectrochemical (PEC) water splitting by tungsten oxide-based photoanodes, as a stable and environmental-friendly material with moderate band gap, has attracted significant interest in recent years. The performance of WO3 photoanode could be hindered by its poor oxygen evolution reaction kinetics and high charge carrier recombination rate. Additionally, scalable and cost-effective commercial procedure to prepare nanostructured electrodes is still challenging. We present, for the first time, a novel and scalable method to fabricate highly efficient self-supported WO3/W nanostructured photoanodes from commercial W–Cu powder metallurgy (P/M) parts for water splitting. The electrodes were prepared by electrochemical etching of Cu networks followed by hydrothermal growth of WO3 nanoflakes. Interconnected channels of W skeleton provided high active surface area for the growth of WO3 nanoflakes with a thickness of ~40 nm and lateral dimension of ~250 nm. The optimized photoelectrode having 35% interconnected porosity exhibited an impressive current density of 4.36 mA cm−2 comprising a remarkable photocurrent of 1.71 mA cm−2 at 1.23 V vs. RHE under 100 mW cm−2 simulated sunlight. This achievement is amongst the highest reported photocurrents for WO3 photoelectrodes with tungsten substrate reported so far. Impedance and Mott-Schottky analyses evidenced fast charge transfer, low recombination rate, and accelerated O2 detachment provided by optimum 3D porous WO3/W electrode. Due to the nature of the commercial P/M parts and low-temperature hydrothermal processing, the procedure is cost-effective and scalable which can pave a new route for the fabrication of highly porous and efficient water splitting electrodes.  相似文献   

20.
Two-dimensional heterojunction g-C3N4/BCN was constructed via thermal polymerization process. The formed two-dimensional heterostructure could enhance the interfacial contact area between BCN and porous g-C3N4 as well as shorten the photogenerated charge carriers transfer time and distance. The two-dimensional g-C3N4/BCN heterojunction photoanode shows enhanced photoelectrochemical (PEC) performance for water splitting under visible-light irradiation, which primarily originates from the improved charge transfer and separation, and prolonged lifetime of electrons. Under the visible light irradiation, the g-C3N4/BCN heterojunction sample yields a photocurrent density of ∼0.62 mA cm−2 at 1.23 V vs. RHE, which is about eight times as many as that of CN (0.08 mA cm−2) electrode at the same conditions. In addition, the possible electron transfer model and mechanism of PEC water splitting for H2 evolution have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号