首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic activity of Ni/La2O3-Al2O3 catalysts modified with noble metals (Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, SBET, X-ray diffraction, temperature-programmed reduction, UV–vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La2O3 dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal.  相似文献   

2.
Ni catalysts supported on different carriers like δ,θ-Al2O3, MgAl2O4, SiO2–Al2O3 and ZrO2–Al2O3 were prepared. The solids were characterized by chemical analysis, N2 adsorption–desorption isotherms, X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, high-resolution transmission electron microscopy and temperature-programmed oxidation. The catalytic properties of the samples were evaluated in the reaction of reforming of methane with CO2 at 923 K. It was shown that this kind of support greatly affects the structure and catalytic performance of the catalysts. Ni catalyst supported on MgAl2O4 showed the highest activity and stability due to the presence of small well dispersed Ni particles with size of 5.1 nm. It was shown that the lowest activity of Ni catalyst supported on SiO2–Al2O3 oxide was caused by the agglomeration of nickel particles and formation of filamentous carbon under reaction conditions detected by the high resolution transmission electron microscopy.  相似文献   

3.
Dry reforming of methane (DRM) is known to produce synthesis gas through the utilization of greenhouse gases to ensure environmentally benign process and rational use of natural resources. Many catalyst formulations operating at “ideal” conditions were proposed for DRM reaction, including those based on noble (Pt, Rh) and non-noble (Ni, Co) metals supported on various oxides. This review is focused on the recent advances in lanthanoid-containing Ni-based DRM catalysts. We consider the performance of Ni-based catalysts supported on LnOx oxides (La2O3, CeO2, etc.), promotion of the said composites by noble or transition metals, organization of pristine and promoted Ni–LnOx interfaces on the surfaces of various supports, including ordered materials. Analysis of features of the high-performance DRM catalysts is provided. The outlook of the existing challenges and opportunities in the rational design of a new generation of lanthanoid-containing Ni-based catalysts for dry reforming of methane and other hydrocarbons is provided.  相似文献   

4.
Nanostructured Ni-incorporated mesoporous alumina (MAl) materials with different Ni loading (7, 10 and 15 wt %) were prepared by a template assisted hydrothermal synthesis method and tested as catalysts for CO2 reforming of methane under different conditions (nickel loading, gas hourly space velocity (GHSV), reaction temperature and time-on-stream (TOS)). The most active catalyst tested (Ni(10 wt%)-MAl) showed a very high stability over 200 h compared to a Ni(10 wt%)/γ-Al2O3 prepared using a co-precipitation method which had a significant loss in activity after only ∼4 h of testing. The high stability of the Ni-MAl materials prepared by the template assisted method was due to the Ni nanoparticles in these catalysts being highly stable towards migration/sintering under the reaction conditions used (800 °C, 52,000 mL h−1 g−1). The low susceptibility of the Ni nanoparticles in these catalysts to migration/sintering was most likely due to a strong Ni-support interaction and/or active metal particles being confined to the mesoporous channels of the support. The Ni-MAl catalysts also had significantly lower amounts of carbon deposited compared to the catalyst prepared using the co-precipitation method.  相似文献   

5.
Autothermal reforming of methane (ATRM), combination of partial oxidation and steam reforming was performed over MgO supported Ni catalysts. The preparation of MgO via surfactant-assisted precipitation method led to obtain a nanocrystalline carrier for nickel catalysts. The results demonstrated that methane conversion is significantly increased with increasing the Ni content (5, 7, 10 and 15%Ni) and methane conversion of 15%Ni/MgO was higher than that of other catalysts with lower Ni loading in all operation temperatures.In addition, increasing the system operation temperatures led to decrease in H2/CO due to the fact that water-gas shift reaction was thermodynamically unfavorable at elevated temperatures. This catalyst also exhibited stable catalytic performance during 50 h time on stream. Furthermore, the influences of varying GHSV and feed ratio on activity of 15%Ni/MgO catalyst were investigated.  相似文献   

6.
Catalysts of Ni supported on home-made mesoporous alumina (Ni/M-Al2O3) were prepared via facile incipient impregnation method and calcined under different temperature (500–800 °C). Compared with catalysts of Ni supported on commercial alumina, they showed much higher conversion and lower carbon deposition in methane dry reforming (DRM). Among the catalysts, Ni/M-Al2O3-700 exhibited the highest DRM activity, with 77.6% CH4 conversion and 85.4% CO2 conversion at 700 °C. TPR revealed that almost all the Ni was in the form of NiAl2O4 spinel after calcination at 700 °C. Due to the strong metal-support interaction of NiAl2O4 structure, the Ni crystal size of Ni/M-Al2O3-700 after reduction was around 5 nm. TGA and TEM results showed its carbon deposition after 20 h DRM test was only 3.8% and mainly in the form of amorphous carbon. This work indicates that the formation of NiAl2O4 spinel is beneficial to activity and stability towards DRM reaction and controlling calcination temperature is crucial.  相似文献   

7.
A series of Fe modified hydrotalcite-derived Ni-based catalysts (Ni3Fex-calc) were synthesized to evaluate the effect of Fe on CO2 methanation performance over Ni3-calc catalyst. The results showed that Ni3–Fe0.5-calc had superior catalytic activity with 78% CO2 conversion rate at 200 °C. The addition of moderate amount of Fe can effectively improve the reducibility, enrich the medium basic sites of Ni3-calc catalyst, and further facilitate the adsorption and activation of CO2. This resulted in the outstanding low-temperature CO2 methanation activity, as well as the enhanced resistance of carbon deposition. In-situ DRIFTS results indicated that the CO2 methanation reaction mechanism involved a progressive hydrogenation of carbonate and formate species to methane route. The formate species was the main intermediates during CO2 methanation. The introduction of Fe could significantly accelerate the hydrogenation rate of carbonates and formate species.  相似文献   

8.
During the last few decades, the global energy requirement is soaring significantly due to the rise of global population and economic development. This resulted in colossal release of CO2 and CH4, emissions into the atmosphere referred as greenhouse gases (GHGs), which poses a detrimental effects for the environment. One of the sustainable solutions to curb emissions of GHGs into the atmosphere is efficient utilization of syngas in order to produce useful chemicals and fuels. A comprehensive review is presented to highlight the capability of Ni-based catalysts in methane reforming through the application of both steam and dry routes referred to as bi-reforming of methane (BRM). Ni-based catalysts were found to support favorable reaction activity as they are cheaper than many exorbitant catalysts. The metal used for catalyst support exhibits higher stability and thermal resistance with improved resistance to coke formation. This review entails recent progresses in the development of Ni-based catalysts along with physical and kinetic aspects of the BRM process.  相似文献   

9.
In this work the effects of steam-to-carbon ratio (S/C), and addition of H2 or O2 to the feed on the product yields and carbon deposition in the steam reforming (SR) of ethanol over Ni/MgAl2O4, Ni/Ce0.6Zr0.4O2, and Ni/CeO2 at 600 °C have been investigated. Increasing the S/C-ratio from 1.6 to 8.3 over Ni/MgAl2O4 increased conversion of ethanol as well as the yield of H2, while the carbon deposition and yield of hydrocarbons decreased. Oxygen addition at S/C-ratio of 6 over Ni/MgAl2O4, Ni/Ce0.6Zr0.4O2, and Ni/CeO2 increased conversion, decreased the yield of hydrocarbons, and led to a decrease in the carbon deposition. Carbon deposition was almost eliminated over Ni/MgAl2O4 and Ni/Ce0.6Zr0.4O2 at an O/C-ratio of roughly 0.8 or higher. The penalty of adding O2 was a decrease in the yield of H2 from 70% at O/C = 0 to 50% at O/C = 0.8–1.  相似文献   

10.
Methane reforming with CO2 over Samaria-promoted Ni and Co/SBA-15 was comparatively investigated. The Co, Ni (10%wt) and Sm (0.5, 1 and 1.5%wt) ions were introduced by two-solvent impregnation method. The Ni and Co catalysts with/without promoter, were examined by N2 adsorption-desorption, x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) methods, and then evaluated in CO2 reforming of methane. The XRD and TEM results indicated that Ni and Co/SBA-15 promoted by 1%wt of Samaria, had the smallest NiO and Co3O4 particles size and the highest dispersion; as a result, they would rather studying dry reforming of methane test. Catalytic results indicated that Samaria promoted Ni/SBA-15 had the highest conversion (CH4 conversion~58% at 700 °C), while a remarkable decrease of catalytic activity was observed over Samaria-promoted Co/SBA-15 (CH4 conversion~25% at 700 °C). The positive effect of Samaria on Ni/SBA-15 catalyst activity is probably due to smaller NiO particles, higher NiO dispersion and lower trend to carbon deposition. On the contrary, the negative effect of Samaria on Co/SBA-15 catalyst activity is maybe due to Co oxidation to inactive phase and sintering of Co particles in high temperatures.  相似文献   

11.
The thermocatalytic decomposition (TCD) of methane is considered as a milestone towards the production of valuable COx-free hydrogen and carbon nanomaterials without the use of steam or O2. Previous reviews have been aimed at methane decomposition over the different catalysts, such as nickel-based catalysts, non-nickel-based catalysts, metal oxide-supported catalysts, and carbon-supported catalysts. The Ni-based catalysts are suitably applied for methane TCD process due to their high activity and low cost. However, the loss of activity and/or stability with reaction time is one of the most notable challenges in the use of Ni-based catalysts, and a number of studies on the roles of various factors in overcoming such a problem can be found in the literature. Recently, the use of the second metal as a promoter to control catalyst deactivation has attracted much attention. The present review focuses on classification of the different promoters based on the periodic table of elements, such as alkali metals, alkaline earth, transition metals, noble metals, and rare earth metals, and makes a detailed discussion on promotional roles in influencing their physicochemical properties and catalytic performance of the Ni-based catalysts. The generalized structure-performance relationship of the metals-doped catalysts may give an appreciated reference to the design of catalysts with highly pure hydrogen production and carbon nanomaterials. In addition, this review also covers the works on effects of the promoters on nature and morphology of the formed carbon nanomaterials. The use of transition metals (Fe, Co or Cu), noble metal (Pd or Pt), and rare earth metal (La) with a suitable loading as a promoter influenced performance and lifespan of the catalyst and the interaction of Ni particles with the support. Among these promoters, Cu, Pd, La, and Cu–Pd as a dopant have demonstrated superior performance, which was attributed to the capability of these elements in prohibiting carbon accumulation on the active Ni components.  相似文献   

12.
The highly dispersed mNi/xLa−Si catalysts with varied weight percentages of Ni and La were synthesized via one-pot sol-gel process and subsequently applied to combined carbon dioxide and steam reforming of methane (CSDRM) for syngas production. The addition of La improved the catalytic activity and stability as well as the coke resistance of the mNi/xLa−Si catalysts. The effects of preparation routes, Ni contents and CO2/steam (C/S) ratios on the performances of the Ni/LaSi catalysts were studied in detail for the CSDRM. The 17.5Ni/3.0LaSi catalyst synthesized with the assistance of poly (ethylene glycol) and ethylene glycol exhibited the most excellent catalytic activity, stability and coke resistance. In addition, the H2/CO ratios in the product gas could be tuned by changing the C/S ratios in the feed. When the C/S ratio was 0.5, the H2/CO ratio of about 2 was achieved for the 17.5Ni/3.0LaSi catalyst.  相似文献   

13.
Ni-containing mixed oxides derived from layered double hydroxides with various amounts of yttrium were synthesized by a co-precipitation method at constant pH and then obtained by thermal decomposition. The characterization techniques of XRD, elemental analysis, low-temperature N2 sorption, H2-TPR, CO2-TPD, TGA and TPO were used on the studied catalysts. The catalytic activity of the catalysts was evaluated in the CO2 methanation reaction performed at atmospheric pressure. The obtained results confirmed the formation of nano-sized mixed oxides after the thermal decomposition of hydrotalcites. The introduction of yttrium to Ni/Mg/Al layered double hydroxides led to a stronger interaction between nickel species and the matrix support and decreased nickel particle size as compared to the yttrium-free catalyst. The modification with Y (0.4 and 2 wt%) had a positive effect on the catalytic performance in the moderate temperature region (250–300 °C), with CO2 conversion increasing from 16% for MO-0Y to 81% and 40% for MO-0.4Y and MO-2.0Y at 250 °C, respectively. The improved activity may be correlated with the increase of percentage of medium-strength basic sites, the stronger metal-support interaction, as well as decreased crystallite size of metallic nickel. High selectivity towards methane of 99% formation at 250 °C was registered for all the catalysts.  相似文献   

14.
15.
Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion of ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending as solid carbon over Ni/MgAl2O4 and Ni/Ce0.6Zr0.4O2.  相似文献   

16.
Ni catalysts supported on mixed ZnOAl2O3 and on pure ZnO and Al2O3 were prepared, characterized by XRD, TPR, and XPS, and tested in long-term methane dry reforming at low temperature (400 °C). Depending on Zn/Al ratio in the supports, the catalysts varied in their physico-chemical properties and exhibited different trends in their on-stream catalytic activity. Catalysts with high alumina content consist of a mixture of alumina and zinc aluminate phases with metallic Ni particles on their surface. These samples show medium activity for reforming and high on-stream stability. The catalysts on mixed Zn-rich supports were more active than those on Al-rich supports and exhibited maxima in their activity after 30–40 h on stream, while Ni on pure ZnO possessed very low activity. Such contrast in performance of Zn-rich catalysts was explained by detected transformation of initially formed NiZn alloy to a mixture of Ni and Ni3ZnC0.7 particles that are assumed to have higher activity for reforming. Moreover, the size of Ni-containing particles on Zn-rich supports decreased under reaction conditions resulting in higher Ni dispersion.  相似文献   

17.
The present work investigates the performance of Re-promoted Nickel-based catalyst supported on calcium oxide for glycerol dry reforming reaction. The catalysts were prepared using wet impregnation method and their catalytic performance was tested in a packed bed reactor with CO2 to glycerol ratio (CGR) of 1–5, reaction temperature of 600–900 °C and gas hourly specific velocity (GHSV) of 1.44 × 104–7.20 × 104 ml gcat−1 s−1. The optimum operating temperature for both Ni/CaO and ReNi/CaO is 800 °C, with the GHSV of 3.6 × 104 mL gcat−1s−1. The optimum CGR for Ni/CaO and ReNi/CaO is 1.0 and 3.0, respectively. At this condition, hydrogen gas is directly produced from glycerol decomposition and indirectly from water-gas-shift reaction. After 2 h at the optimum conditions, 5% ReNi/CaO gives optimal glycerol conversion and hydrogen yield of approximately 61% and 56%, respectively, while in comparison to 15% Ni/CaO, the conversion and yield are 35 and 30%, respectively. Characterization of the spent catalysts showed the existence of whisker carbon from the CO2 hydrogenation and methanation processes. By comparing to 15% Ni/CaO, the addition of Re increases the acidic sites of the catalyst and enhanced the surface adsorption of OH group of the glycerol. The adsorbed glycerol on the catalyst surface would further react with the adsorbed CO2 to yield gases products. Thus, the catalytic activity improved significantly.  相似文献   

18.
A plate-type alumina support was synthesized through a novel anodization technology followed by a hot water treatment, which resulted in the drastically enlargement of support BET surface area from 16.5 to 204.6 g/m2, and such BET value is even comparable to some commercial alumina supports. A high thermal stability of this kind of porous anodic alumina support was shown because as much as 63% of surface area remained after the support subjected to 700 °C air calcination for 50 h. Innovatively, an electrical heating pattern was allowed over this plate support due to the existence of Fe–Cr–Ni alloy interlayer among the support. Our work showed that the utilization of electrical heating pattern would shorten the reformer start-up time from 1 to 2 h to just a few minutes. With the porous anodic alumina support, a 17.9-wt% Ni catalyst with nickel aluminate layer was synthesized and its reforming reactivity was investigated during stationary and DSS SRM at 700 °C, under usual and electrical heating pattern. It showed excellent SRM reactivity and no deactivation was evidenced during 500 h stationary test and 100 times start–stop cycles DSS SRM test. Nevertheless, for the industrialization, some efforts should be made to alleviate the sintering of anodic supports, because after subjected to a hydrothermal treatment at 700 °C for 50 h, only 36% of surface area was kept.  相似文献   

19.
Ni-based/SBA-15 catalysts, were promoted by 3wt % of samaria (Sm2O3), Yttria (Y2O3) and Zirconia (ZrO2), by two-solvent impregnation method. The catalysts characterization was performed by N2 adsorption–desorption, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Electron Scanning Microscopy (FESEM), Temperature Programmed Oxidation/Reduction (TPO/TPR) and NH3-Temperature Programmed Desorption (NH3-TPD) techniques. Then, evaluated by CO2/methane reforming.The CO2/methane reforming outcomes revealed that samaria-promoted catalyst showed excellent activity, stability and cock resistance, while yttria-promoted catalyst just illustrated good activity at high temperature and zirconia-promoted catalyst didn't show any modification in catalytic performance in comparison to Ni-based catalyst with no promoter. Samaria-promoted TEM and TPR analysis, indicated adding samaria improved the NiO particles interaction with SBA-15 support pores wall and NiO dispersion. The TPO analysis displayed that coke deposition in samaria-promoted sample after 12 h reaction is less than yttria-promoted during stream of 5 h. Also, it is suggested that for samaria containing catalyst, cock deposition occurred on the support. Therefore, nickel active sites were preserved for time on stream of 12 h, which is the main reason for samaria-promoted catalyst superior stability than other's.  相似文献   

20.
Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al2O3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al2O3 support on the catalytic performance of Ni/γ-Al2O3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal–support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al2O3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal–support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号