首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detailed chemical kinetic model. A high CO2 level enhanced formation of NO under reducing conditions while it inhibited NO under stoichiometric and lean conditions. The detailed chemical kinetic model captured fairly well all the experimental trends. According to the present study, the enhanced CO concentrations and alteration in the amount and partitioning of O/H radicals, rather than direct reactions between N-radicals and CO2, are responsible for the effect of a high CO2 concentration on ammonia conversion. When CO2 is present as a bulk gas, formation of NO is facilitated by the increased OH/H ratio. Besides, the high CO levels enhance HNCO formation through NH2+CO. However, reactions NH2+O to form HNO and NH2+H to form NH are inhibited due to the reduced concentration of O and H radicals. Instead reactions of NH2 with species from the hydrocarbon/methylamine pool preserve reactive nitrogen as reduced species. These reactions reduce the NH2 availability to form NO by other pathways like via HNO or NH and increase the probability of forming N2 instead of NO.  相似文献   

2.
The oxidation of NH3 under fuel-rich conditions and moderate temperatures has been studied in terms of a chemical kinetic model over a wide range of conditions, based on the measurements of Hasegawa and Sato. Their experiments covered the fuels hydrogen (0 to 80 vol%), carbon monoxide (0 to 95 vol%), and methane (0 to 1.5 vol%), stoichiometries ranging from slightly lean to very fuel rich, temperatures from 300 to 1330 K, and NO levels from 0 to 2500 ppm. A detailed reaction mechanism has been established, based on earlier work on ammonia oxidation in flames and on selective noncatalytic reduction of NO by NH3. The kinetic model reproduces the experimental trends qualitatively over the full range of conditions covered, and often the predictions are in quantitative agreement with the observations. Using reaction path analysis and sensitivity studies, the major reaction paths have been identified. The comparatively low temperatures in the present study, as well as the presence of NO, promote the reaction path NH3→NH2→N2 (directly or via NNH), rather than the sequence NH3→NH2→NH→N important in flames. The major conversion of fuel-N species to N2 occurs by reaction of amine radicals with NO, in particular NH2+NO. In the presence of CH4, NO is partly converted to cyanides by reaction with CH3. The mechanism is recommended for modeling the reduction of NO by primary measures in the combustion of biomass, since it has been validated under conditions resembling the conversion of early nitrogenous volatile species in a staged combustion process. It is also appropriate for studies of NO formation in the combustion of gas from gasifying coal.  相似文献   

3.
The conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle of 7 mm in diameter were investigated in a laboratory-scale flow tube reactor under oxy-fuel fluidized bed (FB) conditions. The method of isothermal thermo-gravimetric analysis (TGA) combing with the coal properties was proposed to distinguish the devolatilization and char combustion stages of coal combustion. The results show that the char combustion stage plays a dominant role in NO and N2O emissions in oxy-fuel FB combustion. Temperature changes the trade-off between NO and N2O during the two stages. With increasing temperature, the conversion ratios of fuel-N to NO during the two stages increase, and the opposite tendencies are observed for N2O. CO2 inhibits the fuel-N conversions to NO during the two stages but promotes those to N2O. Compared with air combustion, the conversion ratios of fuel-N to NO during the two stages are lower in 21%O2/79%CO2, and those to N2O are higher. At <O2> = 21–50% by volume, the conversion ratios of fuel-N to NO during the two stages reach the maximum values at <O2> = 30% by volume, and those to N2O decrease with increasing O2 concentration. H2O suppresses the fuel-N conversions to NO and N2O during the two stages. A higher coal rank has higher total conversion ratios of fuel-N to NO and N2O. Fuel-N, volatile matter, and fixed carbon contents are the important factors on fuel-N conversions to NO and N2O during the two stages. The results benefit the understanding of NO and N2O emission mechanisms during oxy-fuel FB combustion of coal.  相似文献   

4.
The addition of hydrogen (H2) into the intake air of a diesel engine was found to significantly increase the emissions of nitrogen dioxide (NO2). Previous research demonstrated a strong correlation between the emissions of NO2 and unburned H2 in exhaust gas. However, the mechanism whereby H2 addition in increasing NO2 formation in a H2-diesel dual fuel engine. Previously has not been investigated.This research numerically verified the hypothesis that the increased NO2 emissions observed with the addition of H2 was formed through the conversion from NO to NO2 during the post combustion oxidation process of the unburned H2 when mixed with the hot NO-containing combustion products. A variable volume single zone model with detailed chemistry was applied to simulate post-combustion oxidation process of the unburned H2 and its effect on NO2 emissions. The mixing of the unburned H2 with the NO-containing hot combustion products was found to convert NO to NO2. Such a conversion is promoted by the hydroperoxyl (HO2) radical formed during the oxidation process of the H2. The factors affecting the NO2 formation and its destruction include the concentration of NO, H2, O2, and the temperature of the bulk mixture. When H2 and hot NO-containing combustion products mixed during the early stage of expansion stroke, the NO2 formed during H2 oxidation was later dissociated to NO after the complete consumption of H2. The complete combustion of H2 exhausted the source of HO2 necessary for the conversion from NO to NO2. The mixing of H2 with combustion products during the last part of the expansion stroke was not able to convert NO to NO2 since the temperature was too low for H2 to oxidize and to provide the HO2 needed. The bulk mixture temperature range suitable for meaningful conversion from NO to NO2 aided by HO2 produced during the oxidation of H2 was examined and presented.  相似文献   

5.
This work examined the effects of CO2 gasification in the reduction layer on NO emissions during subsequent char combustion in the oxidation layer during a grate-fired process. In experimental trials, the pyrolysis char of Shenhua bituminous coal was initially gasified in CO2, employing different conversion rates so as to vary the residence time of the char in the reduction layer. The pore structure and degree of graphitization of the char were monitored and the effects of CO2 gasification on NO emissions were ascertained. In this manner, the relationship between the transformation of char nitrogen and the physicochemical characteristics of the char was clarified. The effects of CO2 gasification on the properties of the char and NO emissions in the subsequent oxidation layer were determined. The results show that CO2 gasification can improve the pore structure and degree of graphitization of the char, such that NO emissions are reduced in an inert atmosphere. However, the conversion rate of char nitrogen will increase in conjunction with oxidative combustion.  相似文献   

6.
Flameless combustion is a well known measure to reduce NOx emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO2 or H2O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O2. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO2 and H2O, and the thereby reduced concentration of O2 in the reaction zone the local partial pressures of CO2 and H2O become significantly higher than that for O2. Therefore, the char reaction with CO2 and H2O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account.  相似文献   

7.
Flue gas recirculation sintering process is a potential technology to decrease fuel consumption and NOx emissions compared with conventional sintering process. In present work, a vertical quartz tube reactor was used to investigate the combustion characteristics and conversion of fuel-N to NOx of quasi-particle. The mass conversion rate of quasi-particle increases with higher temperature. It was found that D1 model is more appropriate than other models to describe quasi-particle combustion process through comparing correlation coefficients calculated by different mechanism models. Effects of temperature, coke size and proportion, circulating flue gas components on the conversion of fuel-N to NOx of quasi-particle were studied. The conversion rate of fuel-N to NOx of quasi-particle increases with higher temperature. With increasing coke size and proportion, the conversion rate of fuel-N to NOx decreases obviously. O2 has a positive impact on the conversion of fuel-N to NOx of quasi-particle. CO could decrease the conversion rate of fuel-N to NOx by reducing NO directly or reacting with char to decrease NOx indirectly. CO2 has an obviously inhibitory effect on the conversion of fuel-N to NOx of quasi-particle because it reacts with char to generate CO. The results were conducive to further understanding the combustion behavior and NOx formation mechanism of quasi-particle during flue gas recirculation sintering.  相似文献   

8.
Chemical-looping combustion (CLC) is a novel technique used for CO2 separation that has been investigated for gaseous fuel and solid fuel. The nitrogen transfer of fuel-N in the coal is experimentally investigated with a NiO/Al2O3 oxygen carrier under a continuous operation in a 1 kWth interconnected fluidized bed prototype. The effects of the fuel reactor temperature, coal type and operation conditions on the release of gaseous products of nitrogen species in the air reactor and the fuel reactor are carried out. Results show that the nitrogen transfer direction of fuel-N is toward N2 formation in the fuel reactor independent of fuel type. In the fuel reactor N2 is the sole product of nitrogen transfer of fuel-N. The concentration of N2 in the fuel reactor exit gas increases with the fuel reactor temperature. The NOx precursor of HCN can be oxidized by the oxygen carrier to form NO or N2 in the fuel reactor. However, in the fuel reactor NO from coal devolatilization and HCN oxidization by oxygen carrier is completely reduced to N2. The other NOx precursor of NH3 is completely converted to N2 due to oxidization by NiO and the catalytic effect of Ni on the decomposition of NH3. After coal devolatilization, char-N conversion in the fuel reactor is toward N2 formation according to the investigation of solid–solid reaction between char and oxygen carrier. The amount of residual char has a potential to cause formation of nitrogen contaminants in the air reactor. In the air reactor, NO is the only nitrogen contaminant, and there is no NO2 formation. The high fuel reactor temperature results in little residual char coming into the air reactor. The proportion of char-N converted to NO in the air reactor increases from 16.98% to 18.85% when the fuel reactor temperature changes from 850 to 950 °C. For the fuels containing more volatile matter, the possibility of NO formation in the air reactor is smaller than the fuels containing less volatile matter. For the fuels containing less volatile matter, char gasification rate is still a significant factor both for the carbon capture efficiency and NO formation.  相似文献   

9.
《能源学会志》2020,93(1):52-61
To study the mechanism of coal combustion and NOx formation, the combustion of coal particles in different atmospheres (O2/N2, O2/CO2) with different O2 concentrations was investigated using the CO2 laser as a heat source. The spatial distribution of atoms and groups (e.g., H at 656.2 nm, O at 777.3 nm, CN at 388.3 nm) relating to the combustion flame were measured simultaneously using laser induced breakdown spectroscopy (LIBS). The residual energy was measured during the collection of LIBS spectra in the combustion process, which could be characterized the temperature profiles of combustion flame due to the positive correlation with temperature. The combustion stage could be clearly discriminated by the emission of H and CN, along with the flame temperature. The residual energy obtained in different atmospheres indicated that the impact of combustion atmosphere on flame temperature is greater in the char combustion stage rather than volatile combustion stage. It was determined from the temporal and spatial distribution of residual energy and CN intensity that a higher flame temperature leads to a higher concentration of CN. The correlation between the generation of CN and the NOx formation was also investigated to show that the formation approaches of NOx are similar in the O2/CO2 and O2/N2 atmospheres, while the fuel-N conversion paths are different between volatile combustion and char combustion stages. The measurement of temporal and spatial distributions of LIBS spectra with varying flame temperatures is significant in revealing the mechanism of coal-particle combustion and NOx formation.  相似文献   

10.
文章通过稀薄氨气在固定床反应器中的燃烧,研究了反应温度、停留时间、氨气浓度和氧气浓度对低浓度氨气燃烧特性的影响,并描述了氨气在氧气过量条件下在陶瓷蜂窝蓄热体中燃烧的动力学过程。研究结果表明:提高反应温度、延长停留时间以及增大氧气浓度和氨气浓度均可以提高NH3转化率,氧气浓度过高会促进NO生成;当反应温度为740~770℃、氨气浓度为1%、氧气浓度为15%时,氨气在陶瓷蓄热体中燃烧的活化能为253.56 kJ/mol;与氨气在自由空间内的燃烧相比,氨气在陶瓷蜂窝蓄热体中主要发生表面燃烧反应。  相似文献   

11.
Low NOx combustion of blended coals is widely used in coal-fired boilers in China to control NOx emission; thus, it is necessary to understand the formation mechanism of NOx and H2S during the combustion of blended coals. This paper focused on the investigation of reductive gases in the formation of NOx and H2S in the reductive zone of blended coals during combustion. Experiments with Zhundong (ZD) and Commercial (GE) coal and their blends with different mixing ratios were conducted in a drop tube furnace at 1200°C–1400°C with an excessive air ratio of 0.6–1.2. The coal conversion and formation characteristics of CO, H2S, and NOx in the fuel-rich zone were carefully studied under different experimental conditions for different blend ratios. Blending ZD into GE was found to increase not only the coal conversion but also the concentrations of CO and H2S as NO reduction accelerated. Both the CO and H2S concentrations inblended coal combustion increase with an increase in the combustion temperature and a decrease in the excessive air ratio. Based on accumulated experimental data, one interesting finding was that NO and H2S from blended coal combustion were almost directly dependent on the CO concentration, and the CO concentration of the blended coal combustion depended on the single char gasification conversion.Thus, CO, NOx, and H2S formation characteristics from blended coal combustion can be well predicted by single char gasification kinetics.  相似文献   

12.
Anthracite could be burnt efficiently at high temperature utilizing oxy-coal technology. To clarify the effects of temperature and atmosphere on char porosity characteristics, char morphology, fuel-N conversion, and reducing products release, rapid pyrolysis and CO2 gasification of anthracite was carried out in a high temperature entrained-flow reactor to simulate the condition in a pulverized coal furnace. Developed pore structure was formed in the gasification chars, which could be contributed to charCO2 reaction at high temperatures. More mesopores were formed in internal carbon skeleton and retained against collapse and coalescent for gasification chars than pyrolysis chars. Compared with pyrolysis char, smoother and denser surface was observed in gasification char with the irregular bulges disappeared due to the destruction of external carbon skeleton. Char-N could be oxidized to NO in CO2 atmosphere and then reduced to N2 by (CN) on the char surface. Char-N release was greatly promoted due to gasification reaction along with poly-condensation at high temperature; and the preact release of char-N would result in a larger portion of NOx reduction in the following reduction zone with the oxygen-staging combustion technology compared with that in air-staging combustion. Complementally, homogeneous reduction in NOx emission would play a minor effect for anthracite in oxy-coal combustion because of the deficiency of CH4 and HCN, especially at high temperature.  相似文献   

13.
To achieve comprehensive prediction of ammonia combustion in terms of flame speed and ignition delay time, an improved mechanism of ammonia oxidation was proposed in this work. The present model (UT-LCS) was based on a previous work [Song et al., 2016] and improved by relevant elementary reactions including NH2, HNO, and N2H2. The model clearly explained reported values of laminar flame speed and ignition delay time in wide ranges of equivalence ratio and pressure. This suggests that NH2, HNO, and N2H2 reactivities play a key role to improve the reaction mechanism of ammonia oxidation in the present model. The model was also applied to demonstrate NH3/H2/air combustion. The present model also appropriately predicted the laminar flame speed of NH3/H2/air combustion as a function of equivalence ratio. Using the model, we discussed the reduction of NO concentration downstream and H2 formation via NH3 decomposition in NH3/H2 fuel-rich combustion. The results provide suggestions for effective combustion of NH3 for future applications.  相似文献   

14.
The influence of those gaseous compounds that can be typically present in combustion processes with flue gas recirculation (FGR) techniques: CO2, H2O, CO, NO, NO2, N2O and SO2, on ethylene conversion was analyzed through an experimental and modeling study. Ethylene oxidation experiments in the presence of the different gaseous compounds were carried out in the 700–1400 K temperature range, at atmospheric pressure, from fuel-lean to fuel-rich conditions, using N2 as bath gas. These experiments were modeled by means of a detailed gas-phase chemical kinetic mechanism, which was used to identify the implications of the different gaseous compounds recirculated for the ethylene oxidation scheme, as well as for their own conversion. Overall, good agreement was obtained between the experimental data and the modeling, and thus the proposed mechanism can be successfully used to model the ethylene oxidation in the presence of flue gases recirculated (CO2, H2O, CO, NO, NO2, N2O and SO2) in a wide range of operating conditions.  相似文献   

15.
Combustion experiments of forest biomass waste in a pilot-scale bubbling fluidised bed combustor were performed under the following conditions: i) bed temperature in the range 750-800 °C, ii) excess air in the range 10-100%, and iii) air staging (80% primary air and 20% secondary air). Longitudinal pressure, temperature and gas composition profiles along the reactor were obtained.The combustion progress along the reactor, here defined as the biomass carbon conversion to CO2, was calculated based on the measured CO2 concentration at several locations. It was found that 75-80% of the biomass carbon was converted to CO2 in the region located below the freeboard first centimetres, that is, the region that includes the bed and the splash zone.Based on the CO2 and NO concentrations in the exit flue gas, it was found that the overall biomass carbon conversion to CO2 was in the range 97.2-99.3%, indicating high combustion efficiency, whereas the biomass nitrogen conversion to NO was lower than 8%.Concerning the Portuguese regulation about gaseous emissions from industrial biomass combustion, namely, the accomplishment of CO, NO and volatile organic compounds (VOC) (expressed as carbon) emission limits, the set of adequate operating conditions includes bed temperatures in the range 750°C-800 °C, excess air levels in the range 20%-60%, and air staging with secondary air accounting for 20% of total combustion air.  相似文献   

16.
This study investigates the characteristics of fuel NOx formation resulting from the combustion of producer gas derived from biomass gasification using different feedstocks. Common industrial burners are optimized for using natural gas or coal-derived syngas. With the increasing demand in using biomass for power generation, it is important to develop burners that can mitigate fuel NOx emissions due to the combustion of ammonia, which is the major nitrogen-containing species in biomass-derived gas. In this study, the combustion process inside the burner is modeled using computational fluid dynamics (CFD) with detailed chemistry. A reduced mechanism (36 species and 198 reactions) is developed from GRI 3.0 in order to reduce the computation time. Combustion simulations are performed for producer gas arising from different feedstocks such as wood gas, wood + 13% DDGS (dried distiller grain soluble) gas and wood + 40% DDGS gas and also at different air equivalence ratios ranging from 1.2 to 2.5. The predicted NOx emissions are compared with the experimental data and good levels of agreement are obtained. It is found out that NOx is very sensitive to the ammonia content in the producer gas. Results show that although NO–NO2 interchanges are the most prominent reactions involving NO, the major NO producing reactions are the oxidation of NH and N at slightly fuel rich conditions and high temperature. Further analysis of results is conducted to determine the conditions favorable for NOx reduction. The results indicate that NOx can be reduced by designing combustion conditions which have fuel rich zones in most of the regions. The results of this study can be used to design low NOx burners for combustion of gas mixtures derived from gasification of biomass. One suggestion to reduce NOx is to produce a diverging flame using a bluff body in the flame region such that NO generated upstream will pass through the fuel rich flame and be reduced.  相似文献   

17.
A numerical study has been conducted to clearly grasp the impact of chemical effects caused by added CO2 and of flame location on flame structure and NO emission behaviour. Flame location affects the major source reaction of CO formation, CO2+H→CO+OH and the H‐removal reaction, CH4+H→CH3+H2. It is, as a result, seen that the reduction of maximum flame temperature due to chemical effects for fuel‐side dilution is mainly caused by the competition of the principal chain branching reaction with the reaction, CH4+H→CH3+H2, while that for fuel‐side dilution is attributed to the competition of the principal chain branching reaction with the reaction, CO2+H→CO+OH. The importance of the NNH mechanism for NO production, where the reaction pathway is NNH→NH→HNO, is recognized. In C‐related reactions most of NO is the direct outcome of (R171) and the contribution of (R171) becomes more and more important with increasing amount of added CO2 as much as the reaction step (R171) competes with the key reaction of thermal mechanism, (R237), for N atom. This indicates a possibility that NO emission in hydrogen flames diluted with CO2 shows less dependent behaviour upon flame temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The NH3 oxidation and reduction process are experimentally and kinetically studied in this paper. It is found that NH3 has contributions not only to N2O formation, but also to N2O destruction in certain conditions. The main product of homogeneous NH3 oxidation is found to be NO rather than N2O, but some bed materials and sulphur sorbents have catalytic contributions to N2O formation from NH3 oxidation. In reduction atmosphere, NH3 can promote the KC destruction. It is deduced that the ammonia injection into fluidized bed coal combustion flue gas can decrease both NOx and N2O emissions. The ammonia injection process is kinetically simulated in this study, and the reduction rates of NOx and N2O are found to depend on temperature, O2 concentration, initial NOx and N2O concentrations, and amount of injected ammonia.  相似文献   

19.
EffectsofNH_3onN_2OFormationandDestructioninFluidizedBedCoalCombustion¥JianWeiYuan;BoFeng;JianxinLu;HaoLiu;DechangLiu(Nationa...  相似文献   

20.
Oxy-steam combustion is a potential new-generation option for CO2 capture and storage. The ignition and combustion characteristics of single coal and biomass particles were investigated in a flow tube reactor in O2/N2 and O2/H2O at various oxygen concentrations. The ignition and combustion processes were recorded using a CCD camera, and the two-color pyrometry was used to estimate the volatile flame temperature and char combustion temperature. In O2/N2 and O2/H2O, coal ignites heterogeneously at <O2> = 21–50%. In O2/N2, biomass ignites homogeneously at <O2> = 21–30%, while it ignites heterogeneously at <O2> = 40–50%. In O2/H2O, biomass ignites homogeneously at <O2> = 21–50%. With increasing oxygen concentration, the ignition delay time, volatile burnout time and char burnout time are decreased, and the volatile flame temperature and char combustion temperature are increased. At a certain oxygen concentration in both atmospheres, the ignition delay time, volatile burnout time and char burnout time of biomass are shorter than those of coal. Moreover, biomass has a higher volatile flame temperature but a lower char combustion temperature than coal. The ignition delay time, volatile burnout time and char burnout time in O2/H2O are lower than those in O2/N2 for coal and biomass. The presence of H2O can improve the combustion rates of coal and biomass. The volatile flame shows a lower temperature in O2/H2O than in O2/N2 at <O2> = 21–50%. The char combustion shows a lower temperature in O2/H2O than in O2/N2 at <O2> = 21–30%, while this behavior is switched at <O2> = 40–50%. The results contribute to the understanding of the ignition and combustion characteristics of coal and biomass in oxy-steam combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号