首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical hydrogen evolution is an important research field to produce renewable energy. Nanostructured two dimensional (2D) materials such as g-C3N4 and MoS2 are potential electrocatalysts for hydrogen evolution reaction (HER). The incorporation of semiconducting material into 2D material enhances the hydrogen evolution. Here in, we have developed composite of acid functionalized MoS2 and g-C3N4 with TiO2 (F–MoS2/TiO2, F-g-C3N4/TiO2). The F–MoS2/TiO2 composite exhibited excellent electrochemical HER activity with an overpotential of 103 mV Vs RHE at 20 mA/cm2 compared to pristine F–MoS2 of 232 mV, TiO2 of 455 mV Vs RHE. In addition F-g-C3N4/TiO2 showed high overpotential of 322 mV at 5 mA/cm2 than pristine F-g-C3N4 and TiO2 of 433 mV and 448 mV Vs RHE at 2.7 mA/cm2 respectively.  相似文献   

2.
MoS2 is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction. Extensive trials have been carried out to increase its low electrical conductivity and insufficient active sites. Here, a remarkable electrocatalyst for hydrogen evolution is developed based on the in-situ preparation of MoS2 confined in graphene nanosheets. Graphene effectively controls the growth of MoS2 and immensely increases the conductivity and structural stability of the composite materials. Remarkably, because of the plentiful active sites, sufficient electrical contact and transport, MoS2 particles confined in graphene nanosheets exhibit an onset overpotential as small as 32 mV, an overpotential approaching 132 mV at 10 mA cm−2, and a low Tafel slope of 45 mV dec−1. This work presents a reasonable architecture for practical applications in efficient electrocatalytic H2 generation.  相似文献   

3.
A facile oxidation-sulfidation strategy is proposed to fabricate the vertically aligned amorphous MoS2 nanosheets on MoO2 films/Mo foil (MF) as free-standing electrode, which features as the integration of three merits (high conductivity, abundant exposures of active sites, and enhanced mass transfer) into one electrode for hydrogen evolution reaction (HER). Density functional theory (DFT) calculations reveal the strong interaction between MoS2 and MoO2, which can enhance the intrinsic conductivity with narrow bandgap, and decreases hydrogen adsorption free energy (ΔGH1 = ~0.06 eV) to facilitate the HER process. Benefiting from the unique hierarchical structure with amorphous MoS2 nanosheets on conductive MoO2 films/MF to facilitate the electron/mass transfer by eliminate contact resistance, controllable number of stacking layers and size of MoS2 slabs to expose more edge sites, the optimal MoS2/MoO2/MF exhibits outstanding activity with overpotential of 154 mV at the current density of 10 mA cm−2, Tafel slope of 52.1 mV dec−1, and robust stability. Furthermore, the intrinsic HER activity (vs. ECSA) on MoS2/MoO2/MF is significantly enhanced, which shows 4.5 and 18.6 times higher than those of MoS2/MF and MoO2/MF at overpotential of 200 mV, respectively.  相似文献   

4.
Exploring inexpensive and earth-abundant electrocatalysts for hydrogen evolution reactions is crucial in electrochemical sustainable chemistry field. In this work, a high-efficiency and inexpensive non-noble metal catalysts as alternatives to hydrogen evolution reaction (HER) was designed by one-step hydrothermal and two-step electrodeposition method. The as-prepared catalyst is composed of the synergistic MoS2–Co3S4 layer decorated by ZnCo layered double hydroxides (ZnCo-LDH), which forms a multi-layer heterostructure (ZnCo/MoS2–Co3S4/NF). The synthesized ZnCo/MoS2–Co3S4/NF exhibits a small overpotential of 31 mV and a low Tafel plot of 53.13 mV dec?1 at a current density of 10 mA cm?2, which is close to the HER performance of the overpotential (26 mV) of Pt/C/NF. The synthesized ZnCo/MoS2–Co3S4/NF also has good stability in alkaline solution. The excellent electrochemical performance of ZnCo/MoS2–Co3S4/NF electrode originates from its abundant active sites and good electronic conductivity brought by the multilayer heterostructure. This work provides a simple and feasible way to design alkaline HER electrocatalysts by growing heterostructures on macroscopic substrates.  相似文献   

5.
The activation energy barrier of the H–O bond of water molecules is high, and thus the rate of H2 evolution reaction (HER) via water splitting is very slow. Hence, chemists are committed to finding high-performance, cheap and stable catalysts for realizing efficient H2 production. The molybdenum disulfide (MoS2)-based bimetallic sulfide electrocatalysts are favored by researchers because of their particular structures and properties. Herein, the Waugh type polyoxometalate (POM) is used as raw materials. A series of MnS–MoS2 electrocatalysts are in-situ coupled on carbon cloth (CC) substrate by a hydrothermal sulfidation method. The catalyst MnS-MoS2-CC possesses high catalytic activity for HER in a alkaline electrolyte, showing a low overpotential of 54 mV at a current density of 10 mA cm?2, which is very close to 35 mV of the 20% Pt/C electrode. Meanwhile, under a current density of over 50 mA cm?2, the overpotential of MnS-MoS2-CC is less than that of the 20% Pt/C electrode. Moreover, the electrocatalysts show overpotentials of 141 mV and 201 mV at a current density of 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M phosphate buffer solution (PBS), respectively. Besides the high catalytic activity, the MnS-MoS2-CC electrode shows long-term durability in a wide pH range, which is confirmed by several methods including the tests of linear sweep voltammetry (LSV) curve, current density vs. time (I-t) curve, and scanning electron microscopy (SEM). This work provides a feasible route for the preparation of HER electrocatalysts applied in broad pH conditions, especially for alkaline solutions.  相似文献   

6.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

7.
Electrocatalytic hydrogen evolution reaction (HER) is one of the green and effective method to produce clean hydrogen energy. However, the development of non-Pt HER catalysts with excellent catalytic activity and long-term stability still remains a great challenge. Herein, a vertically aligned core-shell structure material with hollow polypyrrole (PPy) nanowire as a core and Ru-doped MoS2 (Ru–MoS2) nanosheets as a shell is firstly reported as a highly efficient and ultra-stable catalyst for HER in alkaline solutions. Results indicate that Ru–MoS2@PPy catalyst demands a low overpotential of 37 mV at 10 mA cm?2. In addition, the overpotential at 100 mA cm?2 is 157 mV and it is almost unchanged after 40,000 cyclic voltammetry cycles. The existence of PPy core not only ensures the vertical growth of MoS2 nanosheets to expose more edge sites, but also promotes the rapid transfer of electrons, contributing to the improvement of catalytic activity. More importantly, the strong interface interaction between MoS2 and PPy prevents the collapse of the vertical structure of MoS2 sheets in the electrocatalytic process and greatly enhances the stability of catalysts, which offers an effective strategy to design and synthesize the HER catalysts with superior catalytic stability.  相似文献   

8.
Molybdenum sulfide (MoS2) as a graphene-like sheet material has attracted wide attention owing to the potential for hydrogen evolution reaction (HER). However, the large-scale application of MoS2 is still difficult due to the inherent poor conductivity and insufficient active edge sites. Herein, we develop a simple method to grow P-doped MoS2 nanosheets on carbon cloth for high efficiency HER. The 2D carbon cloth can prevent the stacking of MoS2 nanosheets and improve the conductivity with the doping of P atoms. As a result, the P–MoS2/CC-300 shows the excellent electrocatalytic activity with an overpotential of 81 mV at 10 mA cm?2 and the lower Tafel slope of 98 mV/dec. Furthermore, it also shows the good electrocatalytic durability for 15 h. This work provides an opportunity for the design of excellent and robust MoS2-based catalyst via structural engineering and doping method.  相似文献   

9.
There are many tremendous challenges to enhance the hydrogen evolution reaction (HER) activity of MoS2. In this study, nanoflower-like Co–MoS2/NiCoS structure supported on reduced Graphene Oxide (rGO) was rationally developed via a simple hydrothermal route, where the synergistic regulations of both interface structural and electronic conductivity were successfully presented by using controllable interface engineering and Co metal ions doped into MoS2 nanosheets. Ascribed to the 3D flower-like nanostructure with massive active sites, the interface coupling effect between MoS2 and Ni–Co–S phase, and Co-doped MoS2 can modulate its surface electronic density. The optimal Co–MoS2/NiCoS/rGO hybrid exhibits excellent HER activity in 1.0 M KOH, with a small overpotential (η10, 84 mV) at 10 mA cm?2 and a low Tafel slope (46 mV dec?1), accompanied by good stability. This work provides an effective route to produce other electrocatalysts based on interface structure and electronic conductivity engineering for HER in the future.  相似文献   

10.
Molybdenum disulfide (MoS2), attracts great attention in hydrogen evolution reaction (HER) field, however, low catalytic activity sites and poor conductivity still limit its further application. In this study, an efficient hydrogen evolution electrode with nano-pom-pom multiphasic MoS2 uniformly grew on porous carbonized wood (NP MoS2/CW) was developed. Interestingly, the nano-pom-pom are stacked from sheets of MoS2. Fully exposed active edges of nano-pom-pom MoS2 and high excellent electrical conductivity of carbonized wood enhance collectively electrocatalytic performance for HER. Specifically, the NP MoS2/CW electrode requires an overpotential of 109.5 mV and 305 mV to achieve the current density of 10 mA cm−2 and 400 mA cm−2, respectively (0.5 M H2SO4). NP MoS2/CW has excellent electrocatalytic performance and stability in acidic and alkaline media due to the perfect combination of NP MoS2 unique nanostructure and the unique properties of CW. Therefore, the present work provides a promising strategy into the rational development and utilization of MoS2 for the development of hydrogen evolution.  相似文献   

11.
The reduction of active sites due to reunion and slow electron transfer rates and low electronegativity greatly reduced the catalytic performance of many two-dimensional materials. In this paper, we synthesized composites for partially reducing graphene oxide and molybdenum disulfide (MoS2@prGO) by one-step hydrothermal method. With the addition of triethanolamine, MoS2 is highly dispersed on the prGO carrier and converted into the 1T phase MoS2 (50.4%). Meanwhile, it helps to increase the electron transfer rate of the MoS2@prGO composites. MoS2@prGO composites presents a high electron cloud density due to the existence of N atoms and prGO, which promotes the occurrence of hydrogen ion conversion hydrogen reaction and decreases the electrocatalytic hydrogen evolution overpotential. MoS2@prGO composites exhibits an overpotential of 263 mV at 10 mA/cm2 and a small Tafel slope of 60 mV/dec. This work is devoted to offer a new prospect and direction for the improvement of electrochemical HER performance.  相似文献   

12.
There is great interest in hydrogen evolution in bioelectrochemical systems, such as microbial electrolysis cells (MECs), but these systems require non-optimal near-neutral pH conditions and the use of low-cost, non-precious metal catalysts. Here we show that molybdenum disulfide (MoS2) composite cathodes have electrochemical performance superior to stainless steel (SS) (currently the most promising low-cost, non-precious metal MEC catalyst) or Pt-based cathodes in phosphate or perchlorate electrolytes, yet they cost ∼4.5 times less than Pt-based composite cathodes. At current densities typical of many MECs (2-5 A/m2), the optimal surface density with MoS2 particles on carbon cloth was 25 g/m2, achieving 31 mV less hydrogen evolution overpotential than similarly constructed Pt cathodes in galvanostatic tests with a phosphate buffer. At higher current densities (8-10 A/m2) the MoS2 catalyst had 82 mV less hydrogen evolution overpotential than the Pt-based catalyst. MoS2 composite cathodes performed similarly to Pt cathodes in terms of current densities, hydrogen production rates and COD removal over several batch cycles in MEC reactors. These results show that MoS2 can be used to substantially reduce the cost of cathodes used in MECs for hydrogen gas production.  相似文献   

13.
There are great challenges to develop and fabricate a high performance, low-cost and stable non-platinum catalyst for hydrogen evolution reaction (HER). In our study, we firstly developed a simple method to successfully fabricate a new MoS2/NiCo2S4 heterostructure by a two-step hydrothermal method, and studied the HER property of MoS2/NiCo2S4, where the as-prepared NiCo-layered double hydroxide (NiCo-LDH) was used as the precursor of NiCo2S4. Benefitting from the prominent synergistic effect between NiCo2S4 and MoS2, MoS2 provided massive catalytic active edge sites, and NiCo2S4 enhanced the conductivity of the composite. As a result, the MoS2/NiCo2S4 showed excellent HER catalytic activity, with a current of 10 mA cm−2 at overpotential of 94 mV for HER and a low Tafel slope of 46 mV dec−1, and good cycling stability in Alkaline Media. As well as, our work offered one promising high active and stable non-platinum catalyst for overall water splitting.  相似文献   

14.
Activity and stability are the kernels of MoS2-based catalysts for hydrogen evolution reactions (HER). Here an intercalation-exfoliation nanocomposite (N–MoS2/AOCF) was designed and successfully synthesized through a facile polymer-solution intercalation method, and the molecular chains of amidoximated polyacrylonitrile (AOCF) with coordinating ability was intercalated into the preintercalated molybdenum disulfide (N–MoS2) nanosheets. The structure characterization demonstrated that N–MoS2 dispersed randomly with a small size and curly lamellar structure. Besides, the interlayer spacing enlarged significantly in the AOCF matrix. Furthermore, N–MoS2 nanosheets are tightly combined with AOCF via the coordination bonds between –OH and –NH2 of AOCF; therefore, the diverse active sites and good stability of N–MoS2/AOCF were attributable to the intense bonding effect, inducing desirable HER performance in acidic medium. Notably, the obtained electrocatalyst exhibited a low overpotential (176 mV at a current density of 10 mA/cm2), a small Tafel slope (51.08 mV/dec), and a large electric double-layer capacitance (39.98 mF/cm2).  相似文献   

15.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

16.
The substitution of noble metal catalysts with earth abundant TMs as electrocatalysts for hydrogen production is of great significance. One biggest bottleneck for high-efficiency water electrolysis in TM catalysts is the sluggish reaction kinetics or electron transport efficiency. The electrical coupling between the substrate and the catalytic material can accelerate the electron transport, enhancing the charge transfer kinetics, and thereby improve the catalytic performance of the catalyst. Herein, we report a sandwich-structured CNF/Co3S4/MoS2, MoS2 grown in-situ on N-doped nanofibers with Co3S4 nanoparticles via electrospinning, carbonization and hydrothermal process, as self-supported electrodes for hydrogen evolution reaction. The sandwich structure is comprised of CNFs/Co3S4/MoS2 as substrate/accelerator/catalyst. Thereinto, the three-dimensional CNF framework, intrinsically doped by nitrogen, can open accessible channels for reactants and served as substrates for the in-situ growth of Co3S4 and MoS2 nanocrystals with high conductivity and massive active sites. Hence, the CNF/Co3S4/MoS2 shows outstanding catalytical performance in water electrospinning, only 80 mV required to drive 10 mA cm?2 current density with the Tafel slope of 99.2 mV dec?1 in alkaline media. Besides, the performance can be maintained for at least 40 h with negligible decline. This experiment can provide a new idea for the design of efficient and stable self-supporting electrodes.  相似文献   

17.
We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec−1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec−1, respectively) and enhanced over a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec−1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies.  相似文献   

18.
The exploration of highly efficient non-precious electrocatalysts is essential for water splitting devices. Herein, we synthesized CoS2–MoS2 multi-shelled hollow spheres (MSHSs) as efficient electrocatalysts both for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a Schiff base coordination polymer (CP). Co-CP solid spheres were converted to Co3O4 MSHSs by sintering in air. CoS2–MoS2 MSHSs were obtained by a solvothermal reaction of Co3O4 MSHSs and MoS42− anions. CoS2–MoS2 MSHSs have a high specific surface area of 73.5 m2g-1. Due to the synergistic effect between the CoS2 and MoS2, the electrode of CoS2–MoS2 MSHSs shows low overpotential of 109 mV with Tafel slope of 52.0 mV dec−1 for HER, as well as a low overpotential of 288 mV with Tafel slope of 62.1 mV dec−1 for OER at a current density of 10 mA cm−2 in alkaline solution. The corresponding two-electrode system needs a potential of 1.61 V (vs. RHE) to obtain anodic current density of 10 mA cm−2 for OER and maintains excellent stability for 10 h.  相似文献   

19.
An efficient and scalable method combining ball-milling and liquid-phase exfoliation was used to prepare MoS2 nanosheets. Ammonium bicarbonate as an exfoliation aid could accelerate the delamination and pulverization of bulk MoS2 during preparation. The ball-milled MoS2 was further exfoliated by sonication (S–MoS2NS) or high-speed shear-exfoliation (H–MoS2NS) to obtain MoS2 nanosheets dispersion with high concentration. Moreover, MoS2 quantum dots were also obtained by prolonging sonication time (S–MoS2QS). Most of S–MoS2NS and H–MoS2NS have lateral dimensions less than 150 nm. The S–MoS2QS size concentrates at around 5 nm. The H–MoS2NS mixed with aminated multi-walled carbon nanotubes (MWCNT) could form H–MoS2NS/MWCNT composites with a good conductive network, and was used as a hydrogen evolution reaction (HER) catalyst. The H–MoS2NS/MWCNT composites containing 56 wt% H–MoS2NS exhibited a favorable HER activity with a low overpotential of 284 mV at 10 mA/cm2, a Tafel slope of 97 mV/dec and good stability in acid medium.  相似文献   

20.
Developing advanced noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) is still a great challenge. Herein, a novel HER catalyst with quasi zero-dimensional (0D) MoS2 quantum dots (QDs) supported on two-dimensional (2D) Ti3C2Tx MXene nanosheets is facilely synthesized. The MoS2 QDs/Ti3C2Tx nanohybrid retains the unique layer structure, and the MoS2 QDs are in situ formed and distributed uniformly. The obtained MoS2 QDs/Ti3C2Tx catalyst exhibits superior electrocatalytic activity due to its excellent conductivity, abundant of active sites exposed and a high percentage of 1T metallic phase (~76%) of MoS2 QDs. Remarkably, an early HER overpotential of 220 mV at 10 mA cm?2 and a small Tafel slope of 72 mV dec?1 of MoS2 QDs/Ti3C2Tx are achieved in 0.5 M H2SO4 solution. In addition, the exchange current density of MoS2 QDs/Ti3C2Tx is ~5 times larger compared with pure MoS2, thus demonstrating an accelerated charge transfer during the electrocatalytic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号