首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research study, orange peel-based biocatalysts developed from different acid protonation were used as a metal-free catalyst for hydrogen production from sodium borohydride (NaBH4). In order to prepare the orange peel-based biocatalyst with higher catalytic activity, experiments were conducted with pure orange peel, different acid molar concentrations, and calcination temperatures. The physical morphology, surface texture, and chemical interaction were thoroughly analyzed by XRD, FTIR Raman, FESEM, BET, and TGA. As a result of the experiment, it was determined that the highly acid-treated biocatalyst (40% H3PO4, 40% H2SO4, 40% HCl) and calcinated at 450 °C for 1 h had higher catalytic activity. As a result, bio-hydrogen production at 35 °C and 70 °C methanolysis with 3% NaBH4 catalyzed by a mixture of acid-treated catalysts were found as 46,213 and 63,842 ml min−1g.cat−1, respectively. However, with the increase of molar concentration of biocatalyst with 40% individual acid prolonged samples, the HGR rates will not have a satisfactory value in comparison with the 40% mixture of the acid-treated catalyst due to less number of active sites.  相似文献   

2.
In this study, grinded apricot kernel shell (GAKS) biobased waste was used for the first time as a cost-effective, efficient, green and metal-free catalyst for hydrogen generation from the hydrolysis reaction of sodium borohydride (NaBH4). For the hydrogen production by NaBH4 hydrolysis reaction, GAKS was treated with various acids (HCl, HNO3, CH3COOH, H3PO4), salt (ZnCl2) and base (KOH). As a result, the phosphoric acid (H3PO4) demonstrated better catalytic activity than other chemical agents. The hydrolysis of NaBH4 with the GAKS-catalyst (GAKScat) was studied depending on different parameters such as acid concentration, furnace burning temperature and time, catalyst amount, NaBH4 concentration and hydrolysis reaction temperature. The obtained GAKScat was characterized by ICP-MS, elemental analysis, TGA, XRD, FT-IR, Boehm, TEM and SEM analyses and was evaluated for its catalytic activity in the hydrogen production from the hydrolysis reaction of NaBH4. According to the results, the optimal H3PO4 percentage was found as 15%. The maximum hydrogen generation rate from the hydrolysis of NaBH4 with the GAKScat was calculated as 20,199 mL min−1 gcat−1. As a result, it can be said that GAKS treated with 15% H3PO4 as a catalyst for hydrogen production is an effective alternative due to its high hydrogen production rate.  相似文献   

3.
In this study, organic waste sources (spent coffee ground (SCG)) is used as metal-free catalyst in comparison with conventional noble-metal catalyst materials for hydrogen generation based on the methanolysis of sodium borohydride solution. Spent coffee ground (SCG) is used as a metal-free catalyst for the first time as treated with different chemicals. The aim is to synthesize the metal-free catalyst that can be used for the production of hydrogen, a renewable energy source. SCG, which was collected from coffee shops, was used for preparing the catalyst. To produce hydrogen by sodium borohydride (NaBH4) methanolysis, SCG is pretreated with different chemical agents (H3PO4, KOH, ZnCl2). According to the acid performances, the choice of phosphoric acid was evaluated at different mixing ratios (10%, 20%, 30%, 40%, 50%, 100%) (w/w), different temperatures (200, 300 and 400 °C) and burning times (30, 45, 60 and 90 min) for the optimization of SCG-catalyst. A detailed characterization of the samples were carried out with the aid of FTIR, SEM, XRD and BET analysis. In this study, the experiments were generally carried out effectively under ambient temperature conditions in10 ml methanol solution containing 0.025 g NaBH4 and 0.1 g of the catalyst. The hydrogen obtained in the experimental studies was determined volumetrically by the gas measurement system. When evaluating the hydrogen volume, different NaBH4 concentrations, catalyst amount and different temperature effects were investigated. The effect of the amount of NaBH4 was investigated with 1%, 2.5%, 5%, and 7.5% ratio of NaBH4 while the influence of the concentration of catalyst was carried-out at 0.05, 0.1, 0.15, and 0.25 g catalysts. Four different temperatures were tested (20, 30, 40, 50 and 60 °C) to explore the performance of the catalyst under different temperatures. The experiments by using SCG-catalyst treated with H3PO4 reveal that the best acid ratio was 100% H3PO4. The maximum hydrogen production rate with the use of SCG-catalyst for the methanolysis of NaBH4 was found to be 8335.5 mL min−1gcat−1. Also, the activation energy was determined to be 9.81 kJ mol−1. Moreover, it was discovered that there was no decline in the percentage of converted catalyst material.  相似文献   

4.
In the present study, defatted spent coffee ground (DSCG) treated with different acids was used as a metal-free catalyst for the first time. The aim of undertaken work is to demonstrate that DSCG can be used as a green catalyst to produce hydrogen through methanolysis of sodium borohydride. To produce hydrogen by the sodium borohydride methanolysis (NaBH4), DSCG was pretreated with different acids (HNO3, CH3COOH, HCl). According to the superior acid performance, acetic acid was selected and then different concentrations of the chosen acid were evaluated (1M, 3M, 5M, and 7M). Subsewuently, different temperatures (200, 300, 400 and 500 °C) and burning times (30, 45, 60 and 90 min) for the optimization of DSCG-catalyst were tested. The experiments with the use of CH3COOH treated DSCG-catalyst reveal that the optimal acid concentration was 1M CH3COOH and the burning temperatures and time were 300 °C and 60 min, respectively. FTIR, SEM, ICP-MS and CHNS elemental analysis were carried out for a through characterization of the catalyst samples. In this study, the experiments were carried out with 10 ml methanol solution contained 0.025 g NaBH4 with 0.1 g catalyst at 30 °C unless otherwise stated. The effect of NaBH4 concentration was investigated with use of 1%, 2.5%, 5%, and 7.5% NaBH4, while the influence of catalyst concentration was discovered with the use of 0.05, 0.1, 0.15, and 0.25 g catalyst. Different temperatures were chosen (30, 40, 50 and 60 °C) to explore the hydrogen production performance of the catalyst. In addition, the maximum hydrogen production rate through methanolysis reaction of NaBH4 by this catalyst was found to be 3171.4 mL min−1gcat−1. Also, the activation energy was determined to be 25.23 kJ mol−1.  相似文献   

5.
Cu based catalysts were synthesized in water and methanol solvents by chemical reduction with sodium borohydride (NaBH4). The obtained catalyst was used to catalyze the NaBH4 hydrolysis reaction with phosphoric acid (H3PO4) including different concentrations. Surface morphology and structural properties of the Cu based catalysts prepared in water and methanol solvents were studied using by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area measurements and Fourier-transform infrared spectroscopy (FTIR) analyses, respectively. The catalytic activity of the catalysts has been tested by measuring the hydrogen production rate by the acidified hydrolysis of NaBH4. The maximum hydrogen production rates in the hydrolysis reaction including 0.25 M H3PO4 using the Cu based catalyst prepared in water and methanol solvents were 825 and 660 ml g?1min?1, respectively. At the same time, the hydrogen production experiments were carried out from this hydrolysis reaction with only H3PO4 and NaBH4 interactions without using Cu metal catalyst. The activation energy obtained based on the nth order reaction model was found to be 61.16 kJ mol?1.  相似文献   

6.
Metal-free catalysts (SP–KOH–P) doped phosphorus and oxygen as a result of modification with H3PO4 to the surface of the activated carbon sample (SP–KOH) obtained by activation of KOH with Spirulina microalgae were used to obtain hydrogen (H2) from methanolysis of NaBH4. The characteristic structure of SP-KOH-P and SP-KOH metal-free catalysts were examined by XRD, TEM, elemental analysis, FTIR, and ICP-MS. The effects of the amount of catalyst, NaBH4 concentration, reusability, and temperature on H2 production rate from NaBH4 methanolysis reaction were investigated. The hydrogen production rate (HGR) obtained with 25 mg SP-KOH-P was found to be 19,500 mL min?1 g?1. The activation energy (Ea) value of SP-KOH-P metal-free catalyst sample was calculated as 38.79 kJ mol?1.  相似文献   

7.
Herein, we report an efficient, environmentally friendly and stable catalyst development to hydrogen evolution from sodium borohydride hydrolysis. For this purpose, Ruthenium complex catalyst successfully fabricated via 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine ligand and RuCl3·H2O salt. Ru complex catalyst was identified with X-Ray Diffraction Analysis, Infrared Spectroscopy, Elemental Analysis, Transmission electron microscopy, Scanning Electron Microscope and Brunauer-Emmett-Teller Surface Area Analysis. According to the analysis results, it was confirmed that Ru complex catalyst was successfully synthesized. Ru complex was used as a catalyst in NaBH4 hydrolysis. The kinetic performance of Ru complex catalyst was evaluated at various reaction temperatures, various sodium borohydride concentration, catalyst concentration and sodium hydroxide concentration in hydrogen evolution. The apparent activation energy for the hydrolysis of sodium borohydride was determined as 25.8 kJ mol?1. With fully conversion, the promised well durability of Ru complex was achieved by the five consecutive cycles for hydrogen evolution in sodium borohydride hydrolysis The hydrogen evolution rates were 299,220 and 160,832 mL H2 gcat?1 min?1 in order of at 50 °C and 30 °C. Furthermore, the proposed mechanism of Ru complex catalyzed sodium borohydride hydrolysis was defined step by step. This study provides different insight into the rational design and utilization and catalytic effects of ruthenium complex in hydrogen evolution performance.  相似文献   

8.
《Journal of power sources》2006,157(1):104-113
This paper presents a comprehensive study of hydrogen production from sodium borohydride (NaBH4), which is synthesized from sodium tetraborate (Na2B4O7) decomposition, for proton exchange membrane (PEM) fuel cells. For this purpose, Na2B4O7 decomposition reaction at 450–500 °C under hydrogen atmosphere and NaBH4 decomposition reaction at 25–40 °C under atmospheric pressure are selected as a common temperature range in practice, and the inlet molar quantities of Na2B4O7 are chosen from 1 to 6 mol with 0.5 mol interval as well. In order to form NaBH4 solution with 7.5 wt.% NaBH4, 1 wt.% NaOH, 91.5 wt.% H2O, the molar quantities of NaBH4 are determined. For a PEM fuel cell operation, the required hydrogen production rates are estimated depending on 60, 65, 70 and 75 g of catalyst used in the NaBH4 solution at 25, 32.5 and 40 °C, respectively. It is concluded that the highest rate of hydrogen production per unit area from NaBH4 solution at 40 °C is found to be 3.834 × 10−5 g H2 s−1 cm−2 for 75 g catalyst. Utilizing 80% of this hydrogen production, the maximum amounts of power generation from a PEM fuel cell per unit area at 80 °C under 5 atm are estimated as 1.121 W cm−2 for 0.016 cm by utilizing hydrogen from 75 g catalyst assisted NaBH4 solution at 40 °C.  相似文献   

9.
Electrospun nanofibers are prepared through electrospinning followed by post-treatment and preferred to use in catalytic applications. The electrospinning provides advantages for active catalysts design based on activity profiles and features of catalyst. In the present study, we fabricated nano-crystalline cobalt oxide (Co3O4) catalyst by electrospinning technique followed by thermal conditioning. Polyacrylonitrile (PAN) based Co as-spun mats (Co/NMs) with homogeneous diameter were prepared by electrospinnig process under several conditions as applied voltage (15–25 kV), working distance (5–7.5 cm) with the feed rate of 1 ml min−1. The calcination process as a post-treatment was applied at different temperatures (232 °C, 289 °C and 450 °C) to obtain electrospun nano-crystalline Co3O4 catalyst. Co/NMs catalysts were characterized by XRD, SEM, TEM, XPS, FT-IR, TG/DTG, and ICP-MS techniques. The parametrically study was performed for evaluating the hydrogen production activity of catalyst from sodium borohydride (NaBH4, SBH) and its originated compounds as ammonia borane (NH3BH3, AB) and methyl-amine borane (CH3NH2BH3, MeAB). The relation between the internal-external properties and catalytic activities of catalysts for hydrogen production was investigated. The beadless Co/NMs-1 catalyst with homogeneous diameter was obtained under electrospinnig process conditions at 15 kV applied voltage and 7.5 cm working distance. All catalysts showed activity for hydrogen production, also the significant effect of post treatment process was observed on the catalytic activity as given order: Co/NMs-1450 > Co/NMs-1289 > Co/NMs-1 > Co/NMs-1232. Furthermore, mesoporous Co3O4 cubic crystals (26 nm) in fibrous architecture was prepared by 450 °C-post-treatment. Hydrogen production rates were recorded at 60 °C as 2.08, 2.20, and 6.39 l H2.gcat−1min−1 for NaBH4, CH3NH2BH3, and NH3BH3, respectively.  相似文献   

10.
Influence of using as catalysis, Ni-Schiff Base complex which we previously synthesized [1] used to support with amberzyme oxirane resin (A.O.R.) polymer for increasing the catalytic activity in NaBH4 hydrolysis reaction, to hydrogen generation was studied. The prepared catalyst was characterized by using SEM, XRD, BET, FT-IR analyze technique. Polymer supported Ni-Schiff Base complex catalyzed NaBH4 hydrolysis reaction was investigated depending on concentration of NaBH4, concentration of NaOH, temperature, percentage of Ni complex in total polymer supported Ni-Schiff Base complex and amount of catalyst factors. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 mL H2·g?1 cat.·min?1 to 2240 mL H2 g?1 cat.·min?1 [1], and with supported amberzyme oxirane resin polymer this nickel based complex catalyst was increased to 13000 mL H2·g?1 cat.·min?1 at 30 °C. The activation energy of complex catalyzed NaBH4 hydrolysis reaction was found as 25.377 kJ/mol. This work also includes kinetic information for the hydrolysis of NaBH4.  相似文献   

11.
Spirulina platensis is defined as the dried biomass of cyanobacteria in commercial use and is biomass with high carbon content. Spirulina platensis microalgae strain supported-CoB catalysts to produce hydrogen from sodium borohydride (NaBH4) were prepared for the first time. The Spirulina platensis microalgae strain was modified with phosphoric acid (H3PO4) to proton. Then, the supported catalyst was performed to produce hydrogen from NaBH4 hydrolysis. The optimum H3PO4 concentration, optimum Co amount, and optimum impregnation time of the H3PO4 with the microalgae strain were investigated. The maximum hydrogen production rate for the 30% CoB catalyst supported on microalgae strain treated with H3PO4 was found to be 3940 mL min−1g−1catalyst. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM) analysis were performed for characterization of CoB catalyst supported on Spirulina microalgae strain. After four consecutive uses, the performance and conversion values of this catalyst were investigated. At the same time, the effect of temperature on the hydrogen production from this hydrolysis reaction was examined. The activation energy with the CoB catalyst supported on Spirulina microalgae strain was calculated as 35.25 kJ mol−1. According to the kinetic model of a power law, n value was found as 0.25 for kinetic studies.  相似文献   

12.
Here, for the first time, a metal-free catalyst was synthesized by ethylenediamine tetra-acetic acid (EDTA) modification of the carbon nitride (g-C3N4) sample and protonation of the obtained sample. The catalyst was used for the production of H2 from the methanolysis of sodium borohydride (NaBH4). The EDTA modification and protonation of the g-C3N4 sample was confirmed by XRD, FTIR, SEM-EDX, and TEM analyses. During the hydrogen generation, NaBH4 concentration effect, catalyst amount effect, temperature effect and catalyst reusability were investigated. The HGR value obtained with 2.5% NaBH4 using 10 mg catalyst was 7571 mL min?1g?1. The activation energy (Ea) for the g–C3N4–EDTA-H catalyst was found to be 32.2 kJ mol?1 The reusability of the g–C3N4–EDTA-H catalyst shows a catalytic performance of 72% even after its fifth use.  相似文献   

13.
Polymeric catalysts have displayed great performance for catalytic hydrogen generation. However, the reported metal free polymeric catalysts for NaBH4 methanolysis are mainly limited to coating strategy where the catalytic activity fade after few cycles. Herein, we report an interpenetrating polymer network (IPN) strategy for rapid and highly recyclable NaBH4 catalytic methanolysis to produce hydrogen (H2) gas. In this study, we prepared poly(acrylic acid)/polysaccharide IPN via Pickering tempted polymerization. The hydrogen generation performance was studied employing different parameters where maximum HGR of 8182 mL H2 min?1 g?1 of CAP. The activation energy Ea, enthalpy and entropy were calculated to be 62.99 kJ mol?1, 32.25 kJ mol and ?130.92 J mol K?1, respectively. Above all, CAP kept cyclic performance to 100% even at the 7th cycle. We confirmed the reproducibility of approach with other natural polysaccharides. This was due to strong chain entanglement of IPN synthesis which forces the active sites to stay in place during cyclic catalysis reaction. Thus, the IPN strategy ensures longer catalyst life for catalytic methanolysis of NaBH4 for H2 generation.  相似文献   

14.
Water beads made from polyacrylamide polymer p-(AAm) were decorated with high efficient metal nanoparticles by inexpensive, fast, simple, and environmental friendly method. These water beads balls were kept in the metal salt solutions for 4 h; to adsorb the metals ions from these aqueous solutions. The metal ions decorated on the p-(AAm) water beads were converted to metal nanoparticles by its reduction with aqueous solution of NaBH4. The prepared materials p-(AAm) loaded with MNPs (M@p-(AAm)) were characterized by ATR-FTIR, XRD, XPS, FESEM, and EDS which show the successful preparation of MNPs over the surface and within p-(AAm). Afterwards the M@p-(AAm) were investigated as a catalyst for the generation of hydrogen from the methanolysis of NaBH4. The Ag@p-(AAm) show good catalytic activity for NaBH4 methanolysis reaction as compared to the other loaded MNPs. In addition, different parameters which effecting H2 generation were also investigated such as; MNPs types, catalyst amount and temperature of the reaction. Low activation energy (Ea) of 21.37 ± 0.67 kJ mol−1, was calculated for NaBH4 methanolysis reaction at temperature ranging from 5.0 °C to 35 °C. Moreover, the catalyst reusability was also studied and found no decrease in percent conversion, however percent efficiency was decreases about 37% after completion of four cycles.  相似文献   

15.
For the first time, phosphoric acid (H3PO4) and acetic acid (CH3COOH) catalysts were used for efficient hydrogen (H2) production from sodium borohydride (NaBH4) ethylene glycolysis reaction. In this experimental study, the effects of ethylene glycol/water ratio, ethylene glycol/acid ratio, NaBH4 concentration, acid concentration, and temperature were investigated. These ethylene glycol/water ratio experiments showed that the use of water alongside ethylene glycol negatively affects H2 production. The hydrogen generation rate (HGR) values obtained for this ethylene glycolysis reaction with 1 M H3PO4 and 1 M CH3COOH catalysts are 5800 and 4542 mLmin-1, respectively. Also, the completion times of ethylene glycolysis reactions with these acids are 8 and 10 s, respectively. The n value obtained for ethylene glycolysis reactions according to the power-law kinetic model was 0.50. The activation energies obtained with H3PO4 and CH3COOH catalysts were 24.45 kJ mol?1and 33.23 kJ mol?1, respectively.  相似文献   

16.
The sodium borohydride(NaBH4) semi-methanolysis and semi-ethanolysis reactions to produce hydrogen are investigated using phosphoric acid(H3PO4) for the first time. The NaBH4 concentration, H3PO4 concentration, and temperature parameters on these semi-alcoholysis reactions are evaluated. The normalized hydrogen generation rates (HGRs) obtained from the NaBH4 semi-methanolysis and semi-ethanolysis acidified using 0.5 M H3PO4 are 11684 and 9981 ml min−1 g−1, respectively. Moreover, the completion times of these semi-methanolysis and semi-ethanolysis reactions with 0.5 M H3PO4 acid concentration are 0.10 and 0.116 min, respectively. Kinetic studies with the power-law model are evaluated. The activation energies(Ea) obtained for the NaBH4 semi-methanolysis and semi-ethanolysis using 0.5 M H3PO4 are 9.08 and 32.47 kJ mol−1, respectively.  相似文献   

17.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

18.
Two-dimensional catalysts, which are sensitive to visible light and have a photothermal effect, can be used to catalyse the release of H2 from sodium borohydride (NaBH4) are being actively explored in energy saving systems. In this work, oxygen vacancy enriched two-dimensional CoFe-layered double hydroxide (CoFe-LDH) derivatives (named as CoFe-x °C, x = 200–500) have been explored for NaBH4 hydrolysis catalyzed by photo-thermal synergy without external heat source. The CoFe-300 °C presents its initial hexagonal lamellar structure and has the highest concentration of oxygen vacancy. These unique properties guarantee its excellent photo-thermal synergistic catalytic performance, achieving hydrogen production rate of 1877.5 mmol g−1 h−1, and maintains high efficiency after 5 cycles. This enhanced photo-thermal synergistic catalytic mechanism is the •OH (generated from h+ and H2O) attacks BH4 (absorbed on Ov sites) to produce H2, the heat from photothermal conversion accelerates the adsorption ability and attacking rate. This study opens a new strategy for the synergistic photo-thermal catalytic hydrolysis of NaBH4.  相似文献   

19.
In present paper, the preparation and catalytic activity of Eupergit C polymer (EC) modified Co complex was reported. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller Surface Area Analysis (BET), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were used to characterization of catalyst. EC modified-Co complex was the first time examined as a catalyst in NaBH4 hydrolysis to H2 evolution. The kinetic calculations were determined by using two different kinetic methods. The low activation energy barriers were achieved as 21.673 kJ mol?1 for nth order model and as 21.061kJmol?1 for Langmuir-Hinshelwood (L-H) model at low temperatures. EC modified-Co complex catalyst exhibited high performance with H2 evolution rates of 3914 mL H2gcat?1min?1 and 9183 mLH2gcat?1min?1 at 30 °C–50 °C. Additionally, Langmuir–Hinshelwood mechanism was explained for EC modified Co complex catalyzed sodium borohydride hydrolysis reaction. The reusability experiments showed that EC modified-Co complex catalyst maintained excellent stability with 100% conversion and without significant lost after the 6th run.  相似文献   

20.
This paper reports the experimental results on using TiO2 based Cu(II)-Schiff Base complex catalyst for hydrolysis of NaBH4. In the presence of Cu-Schiff Base complex which we reported in advance [1] and with titanium dioxide supports a novel catalyst named TiO2 supported 4-4′-Methylenbis (2,6-diethyl)aniline-3,5-di-tert-buthylsalisylaldimine-Cu complex is prepared, successfully. The synthesized catalyst was characterized by means of X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller Surface Area Analysis (BET) and Fourier Transform Infrared Spectroscopy (FT-IR). The as prepared catalyst was employed to generate hydrogen through hydrolysis reaction of NaBH4. Effects of different parameters (e.g. amount of Cu-Schiff Base complex in all catalyst, percentage of NaBH4, percentage of NaOH, amount of TiO2 supported Cu-Schiff Base complex catalyst and different temperatures) are also investigated. A high apparent activation energy (Ea), 25,196 kJ.mol-1 is calculated for hydrolysis of NaBH4 at 20–50 °C. Hydrogen generation rate was 14,020 mL H2/gcat.min and 22,071 mL H2/gcat.min in order of 30 °C and 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号