首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pt/TiO2-decorated reduced graphene oxide composite as catalyst for methanol electro-oxidation with three phase junction structure has been synthesized by UV-photoreduction (denoted as p-Pt/rGO@TiO2). The obtained p-Pt/rGO@TiO2 has been detailedly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). XRD and TEM characterizations indicate that photoreduction is favorable to anchoring Pt nanoparticles (NPs) (ca. 2.2 nm) at the interface between TiO2 and reduced graphene oxide (rGO), and forming the Pt, TiO2 and rGO three phase junction structure. P-Pt/rGO@TiO2 exhibits a higher activity for methanol electro-oxidation than m-Pt/rGO and m-Pt/rGO@TiO2 (prepared by microwave-assisted polyol process). Lifetime tests demonstrate that the electrochemical durability of p-Pt/rGO@TiO2 is improved by a factor of 2 or more as compared with m-Pt/rGO and m-Pt/rGO@TiO2. XPS characterizations of p-Pt/rGO@TiO2 reveal stronger interaction between Pt and support hybrid compared with m-Pt/rGO@TiO2, which facilitates poisoning species removal and prevents Pt nanoparticles from migrating/agglomerating on or detaching from carbon support. This provides a facile and promising strategy to improve both the activity and durability of electrocatalysts for DMFCs.  相似文献   

2.
Highly-dispersed surfactant-free bimetallic Ni–Pt nanoparticles (NPs) with a particle size as small as 2.4 nm were successfully synthesized using NaBH4 as reducing agent in the presence of NaOH, which exhibit excellent catalytic performance with very fast kinetics for selective decomposition of hydrous hydrazine to hydrogen at room temperature. NaOH plays an important role in the formation of highly-dispersed Ni–Pt nanoparticles. The present results bring light to new opportunities in the development of high-performance metal nanoparticle catalysts and encourage the effective application of hydrous hydrazine as a promising hydrogen storage material.  相似文献   

3.
Platinum–Iron nanoparticles supported on reduced graphene oxide powder are synthesized by chemical reduction method as an anode catalyst for the methanol electro oxidation. The characterization of the catalyst has been investigated using physical and electrochemical methods. Prepared catalyst was characterized by scanning electron microscopy (SEM), TEM (Transmission electron microscopy), FT-IR (Fourier-transform infrared spectroscopy), Raman spectroscopy and, X-ray diffraction (XRD) and energy dispersive analysis of X-ray (EDX). Pt and Pt-Fe nanoparticles are uniformly dispersed on the surface of reduced graphene oxide (rGO) powder nanocomposite support. The catalytic properties of the catalyst for methanol electro-oxidation were thoroughly studied by electrochemical methods that involved in the cyclic voltammetry, linear sweep voltammetry (LSV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The Pt-Fe/rGo exhibits high electrocatalytic activity, catalyst tolerance for the CO poisoning and catalyst durability for electro-oxidation of methanol compared to the Pt/rGo and commercial Pt/C catalyst. Therefore, the Pt-Fe/rGo catalyst is a good choice for application in direct methanol fuel cells.  相似文献   

4.
In this paper, the PtNi alloy was embedded into the surface layer of three-dimensional carbon nanosheets (CNSs) with a special layered structure. We controllably adjusted the ratio of Pt/Ni to form large particle alloy with Pt coating Ni and a small number of hollow PtNi alloy pellets. The electro-catalytic methanol oxidation activity and durability of the catalysts were estimated by cyclic voltammetry and chronoamperometric techniques. The results indicated that the doping of Ni effectively improved the activity and anti-poisoning of the catalyst in the methanol electrocatalytic oxidation reaction (MOR). Transmission electron microscopy (TEM), Raman spectroscopy, nitrogen adsorption-desorption techniques, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to explore the composition, morphology and structure of these catalysts. It is discovered that the Pt–Ni/CNSs (2:1) sample exhibits the best MOR activity with a peak current density of 15.03 mA cm?2 at the forward scan due to the excellent lamellar structure, good crystallinity and abundant pore structure of CNSs, which is benefit to form ultrahigh specific surface area, superb electron and ionic conductivity.  相似文献   

5.
The electrooxidation of methanol and ethanol was investigated in acidic media on the platinum–nickel nanoparticles carbon-ceramic modified electrode (Pt–Ni/CCE) via cyclic voltammetric analysis in the mixed 0.5 M methanol (or 0.15 M ethanol) and 0.1 M H2SO4 solutions. The Pt–Ni/CCE catalyst, which has excellent electrocatalytic activity for methanol and ethanol oxidation than the Pt–Ni particles glassy carbon modified electrode (Pt–Ni/GCE), Pt nanoparticles carbon-ceramic modified electrode (Pt/CCE) and smooth Pt electrode, shows great potential as less expensive electrocatalyst for these fuels oxidation. These results showed that the presence of Ni in the structure of catalyst and application of CCE as a substrate greatly enhance the electrocatalytic activity of Pt towards the oxidation of methanol and ethanol. Moreover, the presence of Ni contributes to reduce the amount of Pt in the anodic material of direct methanol or ethanol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. On the other hand, the Pt–Ni/CCE catalyst has satisfactory stability and reproducibility for electrooxidation of methanol and ethanol when stored in ambient conditions or continues cycling making it more attractive for fuel cell applications.  相似文献   

6.
PbPt core–shell-like nanoparticles supported on graphene is successfully synthesized by a simply galvanic displacement reaction method. The composition, morphology, structure of the catalyst and activity towards methanol oxidation are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Chronoamperometric and CV results reveal that PbPt core–shell-like nanoparticles catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. These behaviors are attributed to an electronic effect of the inner Pb or the increase in the d-orbital vacancy of Pt in core–shell-like PbPt catalyst.  相似文献   

7.
NickelIron Layered Double Hydroxide nano composites were electrochemically synthesized on graphene/glassy carbon electrode at a constant potential. The surface morphology and the structure of the electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), elemental mapping analysis, X-ray diffraction (XRD) and Atomic force microscopy (AFM). This electrode was studied for glucose electro-oxidation reaction using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques. Results confirmed high catalytic activity, stability of the graphene/NiFe LDH electrode and glucose electro oxidation reaction on this electrode is under the effect of diffusion process. Also in comparison of some previous reported methods for the glucose electro oxidation, graphene/NiFe LDH shows a high diffusion coefficient as an electro catalyst for glucose electro oxidation. Electrical equivalent circuits for electrodes is obtained by using the Zview software. The low electrochemical charge transfer resistance (Rct) was obtained on the graphene/NiFe LDH due to the presence of NiFe LDH nano composite.  相似文献   

8.
A full-electrochemical method is developed to deposit three dimension structure (3D) flowerlike platinum-ruthenium (PtRu) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticle clusters on multi-walled carbon nanotubes (MWCNTs) through a three-step process. The structure and elemental composition of the PtRu/MWCNTs and PtRuNi/MWCNTs catalysts are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray polycrystalline diffraction (XRD), IRIS advantage inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The presence of Pt(0), Ru(0), Ni(0), Ni(OH)2, NiOOH, RuO2 and NiO is deduced from XPS data. Electrocatalytic properties of the resulting PtRu/MWCNTs and PtRuNi/MWCNTs nanocomposites for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) are investigated. Compared with the Pt/MWCNTs, PtNi/MWCNTs and PtRu/MWCNTs electrodes, an enhanced electrocatalytic activity and an appreciably improved resistance to CO poisoning are observed for the PtRuNi/MWCNTs electrode, which are attributed to the synergetic effect of bifunctional catalysis, three dimension structure, and oxygen functional groups which generated after electrochemical activation treatment on MWCNTs surface. The effect of electrodeposition conditions for the metal complexes on the composition and performance of the alloy nanoparticle clusters is also investigated. The optimized ratios for PtRu and PtRuNi alloy nanoparticle clusters are 8:2 and 8:1:1, respectively, in this experiment condition. The PtRuNi catalyst thus prepared exhibits excellent performance in the direct methanol fuel cells (DMFCs). The enhanced activity of the catalyst is surely throwing some light on the research and development of effective DMFCs catalysts.  相似文献   

9.
Methanol oxidation on carbon-supported Pt–Ru–Ni ternary alloy nanoparticles was investigated based on the porous thin-film electrode technique and compared with that on Johnson–Matthey Pt–Ru alloy catalyst. Emphasis is placed on the effect of alloying degree on the electrocatalytic activity and stability of the ternary catalysts. The as-prepared Pt–Ru–Ni nanoparticles exhibited a single phase fcc disordered structure, and a typical TEM image indicates that the mean diameter is ca. 2.2 nm, with a narrow particle size distribution. Also, the as prepared Pt–Ru–Ni catalysts exhibited significantly enhanced electrocatalytic activity and good stability for methanol oxidation in comparison to commercial Pt–Ru catalyst available from Johnson–Matthey. The highest activity of methanol oxidation on Pt–Ru–Ni catalysts was found with a Pt–Ru–Ni atomic ratio of 60:30:10 and at a heat-treatment temperature of ca. 175 °C. The significantly enhanced catalytic activity for methanol oxidation is attributed to the high dispersion of the ternary catalyst, to the role of Ni as a promotion agent, and especially to the presence of hydroxyl Ru oxide. Moreover, the stability of the ternary nanocatalytic system was found to be greatly improved at heat-treatment temperatures higher than ca. 250 °C, likely due to a higher alloying degree at such temperatures for the ternary catalysts.  相似文献   

10.
11.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   

12.
Ni–Fe–Sn electrocatalyst supported on nickel foam (Ni–Fe–Sn/NF) with high efficiency of hydrogen evolution reaction (HER) has been successfully fabricated through one-step potentiostatic electrodeposition route. The optimized Ni–Fe–Sn/NF displayed an extremely low overpotential of, respectively, 144 and 180 mV at 50 and 100 mA cm?2 for HER in alkaline condition. Moreover, it could retain its superior stability for at least 12 h. The remarkable electrocatalytic activity of our electrocatalyst is ascribed to the high conductivity originated from synergistic effects between Ni, Fe, and Sn during HER process.  相似文献   

13.
A one-step and fast microwave technique was developed to synthesize graphene-supported TiN nanoparticles (TiN–G) directly from graphene and dihydroxybis (ammonium lactato) titanium (IV). During the synthesis graphene served as a reductant and template to reduce the Ti-precursor into TiN and then uniformly disperse TiN nanoparticles on it. Pt/TiN–G catalyst was also successfully prepared with the portion of Pt nanoparticles was anchored at the interface of TiN and graphene. Electrochemical measurements showed that the Pt/TiN–G catalyst exhibited improved catalytic activity for methanol oxidation and enhanced CO tolerance than those of Pt/G catalyst, attributed to the formation of –OH groups on the surface of TiN. And the –OH attached TiN assisted the conversion of CO into CO2.  相似文献   

14.
Exacerbation of climate change has highlighted the need for new environmentally-friendly energy sources. Fuel cells, which are devices capable of extracting electricity directly from internal chemical reactions, represent one promising concept that allows electricity generation without burning fossil fuels. Direct methanol fuel cells are one of the most popular types, and they use methanol as the fuel for electricity production. However, the current lack of suitable electrocatalytic materials limits the application of such devices on an industrial scale. This report presents a simple, one-step method for the preparation of electrocatalytic materials for methanol oxidation. The developed composite materials contain two metals (nickel and cobalt), which both exhibit catalytic properties relevant for methanol electrooxidation, and graphene, which is a carbon nanomaterial that promotes facile charge transfer and enhanced material dispersion. The tested electrodes were prepared using an electrochemical deposition process, which allowed easy control of the process conditions, such as current density, and thus easy manipulation of the final material's properties. Following this process, stable electroactive materials were prepared, and the optimal results were obtained with the electrode prepared with a current density of 3.5 A dm−2 for 15 min: this electrode had a peak current density of 15.82 mA cm−2 in 1 M KOH +1 M methanol solution.  相似文献   

15.
The influence of poisoning of MoOx–Pt catalyst by CO on the kinetics of H2 oxidation reaction (HOR) at MoOx–Pt electrode in 0.5 mol dm−3 HClO4 saturated with H2 containing 100 ppm CO, was examined on rotating disc electrode (RDE) at 25 °C. MoOx–Pt nano-catalyst prepared by the polyole method combined with MoOx post-deposition was supported on commercial carbon black, Vulcan XC-72. The MoOx–Pt/C catalyst was characterized by TEM technique. The catalyst composition is very similar to the nominal one and post-deposited MoOx species block only a small fraction of the active Pt particle surface area. MoOx deposition on the carbon support can be ruled out from the EDAX results and from the low mobility of these oxides under used conditions. Based on Tafel–Heyrovsky–Volmer mechanism the corresponding kinetic equations from a dual-pathway model were derived to describe oxidation current–potential behavior on RDE over entire potential range, at various CO coverages. The polarization RDE curves were fitted with derived polarization equations according to the proposed model. The fitting showed that the HOR proceeded most likely via the Tafel–Volmer (TV) pathway. A very high electrocatalytic activity observed at MoOx–Pt catalyst for the hydrogen oxidation reaction in the presence of 100 ppm CO is achieved through chemical surface reaction of adsorbed CO with Mo surface oxides.  相似文献   

16.
Herein, a novel surfactant-free nanocatalyst of Pd–Fe bimetallic nanoparticles (NPs) supported on the reduced graphene oxide (Pd–Fe/RGO) were synthesized using a two-step reduction in aqueous phase. Electrochemical studies demonstrate that the nanocatalyst exhibits superior catalytic activity towards the formic acid oxidation with high stability due to the synergic effect of Pd–Fe and RGO. The optimized Pd–Fe/RGO (Pd:Fe = 1:5) nanocatalyst possess an specific activity of 2.72 mA cm?2 and an mass activity of 1.0 A mg?1(Pd), which are significantly higher than those of Pd/RGO and commercial Pd/C catalysts.  相似文献   

17.
Exploring low-cost, highly efficient, and sustainable non-precious electrocatalysts for electrolytic H2 generation is driving research for the sustainable green urban development. Herein, we present a simple synthetic approach, through a two-step process, to prepare the bifunctional electrode of Co3O4–C@FeMoP hybrid micro rods/nanosheets anchored on nickel foam (NF), in which the Co3O4–C microrods grown on NF surface are decorated by FeMoP nanosheet layers, which is directly grown through a simple hydrothermal followed by post-phosphorization processes. The obtained hybrid hierarchical Co3O4–C@FeMoP/NF shows a significant enhancement in the electrocatalytic activities of oxygen/hydrogen evolution reactions (OER/HER) in comparison to the individual Co3O4–C and FeMoP nanostructures, thanks to more heterointerface active sites provided by FeMoP nanostructures with three-dimensional (3-D) layered architectures. The Co3O4–C@FeMoP/NF catalyst exhibits a relatively small overpotential of 200 mV vs. RHE for OER to achieve 20 mA/cm2 and 123 mV vs RHE at 10 mA/cm2 for HER along with excellent durability in alkaline electrolytes. We demonstrate the bifunctional electrocatalytic electrode as the electrolyzer for the generation of H2 via water splitting at small applied voltage of 1.61 V to achieve 10 mA/cm2 and good stability for 24-h continuous running.  相似文献   

18.
The influence of the synthesis method and Sn addition on Ni/CeO2–MgO–Al2O3 catalyst is correlated to its catalytic behavior in the reaction of methanol steam reforming. The catalysts prepared by impregnation method are compared to samples obtained by deposition of previously obtained nanoparticles by the polyol method. X-ray diffraction (XRD), specific surface area measurements and H2-temperature programmed reduction (TPR) were used to characterize the catalysts. The differences of the structure, phase transformation and reduction behavior are discussed and related to the catalytic performance of the samples as well as the nature of the carbonaceous deposits formed during the reaction.  相似文献   

19.
Pt and Pt–Ru shells on Cu cores supported on Vulcan carbon XC72R have been synthesized and tested as possible anode electrocatalysts for polymer electrolyte fuel cells. Pt(Cu)/C was prepared by Cu electrodeposition on the black carbon support at constant potential followed by Pt deposition on Cu by galvanic exchange, whereas Pt–Ru(Cu)/C was prepared by spontaneous deposition of Ru species on Pt(Cu)/C. The corresponding cyclic voltammograms in 0.5 M H2SO4 solution showed the hydrogen adsorption/desorption peaks and no Cu oxidation. The respective CO stripping peak potentials of Pt(Cu)/C and Pt–Ru(Cu)/C were about 0.1 and 0.2 V more negative than those corresponding to Pt/C and Ru-decorated Pt/C. The best conditions for CO oxidation were found for Cu deposition potentials between −0.2 and −0.4 V vs. Ag/AgCl/KCl(sat). The Pt economy of the Pt–Ru(Cu)/C system was proved for the methanol oxidation, with specific currents more than twice those obtained on the Ru-decorated commercial Pt/C catalysts.  相似文献   

20.
Au–Pt alloy particles with cauliflower-like microstructures of varying Pt/Au ratios were electrodeposited on indium tin oxide (ITO) substrates by constant potential electrolysis at E = −0.25 V. The results of X-ray diffraction and X-ray photoelectron spectroscopy confirm that the bimetallic alloys can be obtained for different Pt/Au ratios including 4/1, 1/1 and 1/4. The formation of alloyed cauliflower-like microstructures may be the result of the fast formation of gold seeds as the core and subsequent simultaneous deposition of Au and Pt from cyclic voltammetric study. The effect of surface composition of Au–Pt alloy particles on electrocatalytic methanol oxidation were investigated in H2SO4 solution. The electrocatalytic abilities including electrochemical surface area, peak current density and the turnover number of methanol oxidation follow the order of Pt4Au1 > Pt > Pt1Au1. The results can be ascribed to that electronic effect may be prominent while bifunctional effect is insignificant for Au–Pt alloy systems because the electrocatalytic activity of Au is negligible in acidic media. Additionally, the Pt4Au1 electrode has superior kinetics of methanol electro-oxidation than monometallic Pt electrode by calculating the electron transfer coefficient (α).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号