首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of rice bran oil (RBO) on mouse intestinal microbiota and urinary isoflavonoids. Dietary RBO affects intestinal cholesterol absorption. Intestinal microbiota seem to play an important role in isoflavone metabolism. We hypothesized that dietary RBO changes the metabolism of isoflavonoids and intestinal microbiota in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 10% RBO diet (RO group) and those fed a 0.05% daidzein with 10% lard control diet (LO group) for 30 days. Urinary amounts of daidzein and dihydrodaidzein were significantly lower in the RO group than in the LO group. The ratio of equol/daidzein was significantly higher in the RO group (p < 0.01) than in the LO group. The amount of fecal bile acids was significantly greater in the RO group than in the LO group. The composition of cecal microbiota differed between the RO and LO groups. The occupation ratios of Lactobacillales were significantly higher in the RO group (p < 0.05). Significant positive correlation (r = 0.591) was observed between the occupation ratios of Lactobacillales and fecal bile acid content of two dietary groups. This study suggests that dietary rice bran oil has the potential to affect the metabolism of daidzein by altering the metabolic activity of intestinal microbiota.  相似文献   

2.
Hy-Line Brown chickens’ health is closely related to poultry productivity and it is mainly maintained by the immune system, healthy intestinal function, and microflora of chicken. Polysaccharides are biological macromolecules with a variety of activities that can be used as a potential prebiotic to improve poultry health. In this experiment, the function of Alhagi honey polysaccharides (AH) as an immunomodulator on the chicken was investigated. All chicken (120) were randomly distributed to four groups (five replicas/group, six hens/replica). A total of 0.5 mL water was taken orally by the chicken in control group. AH (0.5 mL) in different concentrations (three dosages, 0.3 g/kg, 0.6 g/k, and 1.2 g/kg) were used for the AH-0.3 g/kg, AH-0.6 g/k, and AH-1.2 g/kg group, respectively. The results showed that the growth performance of the chickens and the index of immune organs (the weight of immune organs/the body weight) were enhanced significantly after being AH-treated (p < 0.05). The content of sIgA and cytokines was upregulated remarkably in the intestine after being AH-treated (p < 0.05). The AH treatment significantly enhanced the intestinal epithelial barrier (p < 0.05). Moreover, the percentage of CD4+ and CD8+ T cells in the ileum, spleen, and serum were obviously upscaled (p < 0.05). In addition, the AH treatment significantly enhanced the production of short chain fatty acids (SCFAs) and improved the structure of gut microbiota (p < 0.05). In conclusion, we found that AH-1.2g/kg was the best dosage to improve the chicken’s health, and these data demonstrated that AH could be used as a potential tool to enhance growth performance through improving intestine function, immunity, and gut microbiome in chicken.  相似文献   

3.
Little is known about the ability for epithelial regeneration and wound healing in patients with inflammatory bowel diseases. We evaluated the epithelial proliferation and wound healing ability of patients with Crohn’s disease (CD) using patient-derived intestinal organoids. Human intestinal organoids were constructed in a three-dimensional intestinal crypt culture of enteroscopic biopsy samples from controls and CD patients. The organoid-forming efficiency of ileal crypts derived from CD patients was reduced compared with those from control subjects (p < 0.001). Long-term cultured organoids (≥6 passages) derived from controls and CD patients showed an indistinguishable microscopic appearance and culturing behavior. Under TNFα-enriched conditions (30 ng/mL), the organoid reconstitution rate and cell viability of CD patient-derived organoids were significantly lower than those of the control organoids (p < 0.05 for each). The number of EdU+ cells was significantly lower in TNFα-treated organoids derived from CD patients than in TNFα-treated control organoids (p < 0.05). In a wound healing assay, the unhealed area in TNFα-treated CD patient-derived organoids was significantly larger than that of TNFα-treated control organoids (p < 0.001). The wound healing ability of CD patient-derived organoids is reduced in TNFα-enriched conditions, due to reduced cell proliferation. Epithelial regeneration ability may be impaired in patients with CD.  相似文献   

4.
5.
To explore the protective effect of dietary β-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.  相似文献   

6.
Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: −4.1 ± 0.8%, LF: −1.9 ± 0.8%, sham: −1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: −61.5 ± 15.2%, p < 0.01; LF: −31.8 ± 17.1%, p < 0.05; sham: −35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (−77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: −54.9%, sham: −15.1%; p > 0.05) and Lactobacillus (LF: −26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.  相似文献   

7.
Aims: The aim of the present study is to investigate the differential expression of CD44, CD47 and c-met in ovarian clear cell carcinoma (OCCC), the correlation in their expression and their relationship with the biological behavior of OCCC. Methods: We used immunohistochemistry to examine the expression of CD44, CD47 and c-met in OCCC (86 cases) and investigated the effects of the expression and interaction of these molecules on the development of OCCC. Results: CD44, CD47 and c-met expression was significantly high in OCCC. Expression of CD44 and CD47 correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), and expression of c-met correlated with chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). The surgical stage, CD44, CD47 and c-met expression were independent risk factors for OCCC prognosis (all p < 0.05). Patients with low levels of CD44, CD47 and c-met showed better survival than those with high levels (all p < 0.05). There was a positive correlation between CD44 (or CD47) and c-met, as well as between CD44 and CD47 (the Spearman correlation coefficient rs was 0.783, 0.776 and 0.835, respectively, all p < 0.01). Additionally, pairwise correlation analysis of these three markers shows that the high expression of CD44/CD47, CD44/c-met and CD47/c-met were correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). Conclusions: Expression of CD44, CD47 and c-met was upregulated in OCCC and pairwise correlation. CD44, CD47 and c-met may have synergistic effects on the development of OCCC and are prognostic factors for ovarian cancer.  相似文献   

8.
The purpose of this article is to study the effects and mechanism of miR-4796 in the process of ophiopogon polysaccharide liposome (OPL) regulation of the immune activity of Kupffer cells (KCs). In this study, KCs were used as cell models, and were treated with OPL in different concentrations after being transfected with miR-4796 mimic or miR-4796 inhibitor. Firstly, the secretion of NO and iNOS, phagocytic activity, the expression of surface molecules CD14 and MHC II, apoptosis and ROS secretion were measured by Griess, flow cytometry, fluorescence staining and ELISA. Then, real-time PCR and Western blot were used to measure the expression of TLR4, IKKβ, MyD88 and NF-κB in the TLR4-NF-κB signaling pathway. The results showed that after transfection with miR-4796 mimic, the secretion of NO and iNOS, cell migration, cell phagocytosis and expression levels of CD14 and MHC II in the OPL group were significantly higher than those in the miR-4796 mimic control group (p < 0.05; p < 0.01). In addition, the mRNA and protein expression levels of TLR4, MyD88 and NF-κB were significantly higher than those in miR-4796 mimic control group (p < 0.05; p < 0.01). After transfection with miR-4796 inhibitor, the secretion of NO and iNOS, cell migration, cell phagocytosis, expression of CD14 and MHCII in OPL group were significantly higher than those in the miR-4796 inhibitor control group (p < 0.05; p < 0.01). These results indicated that OPL could regulate the immune activity of KCs by regulating miR-4796 and activating the TLR4-NF-κB signaling pathway.  相似文献   

9.
Weight control based on dietary restriction (DR) alone can cause lipid metabolic failure and progression to fatty liver. This study aimed to investigate the effect of exercise on preventing DR-induced hepatic fat accumulation in Zucker fatty (ZF) rats by focusing on the relationship between adipose tissue lipolysis and hepatic fat uptake. Six-week-old male ZF rats were randomly assigned to obese, DR, or DR with exercise (DR + Ex) groups. The DR and DR + Ex groups were fed a restricted diet, with the latter also undergoing voluntary exercise. After 6 weeks, hepatic fat accumulation was observed in the DR group, whereas intrahepatic fat was markedly reduced in the DR + Ex group. Compared with the obese (Ob) group, the DR group exhibited 2.09-fold expression of hepatic fatty acid translocase (FAT)/CD36 proteins (p < 0.01) and 0.14-fold expression of hepatic fatty acid-binding protein (FABP)1 (p < 0.01). There were no significant differences between the DR + Ex group and the Ob group. FAT/CD36 and hepatic triglyceride (TG) expression levels were strongly positively correlated (r = 0.81, p < 0.001), whereas there was a strong negative correlation between FABP1 and hepatic TG expression levels (r = −0.65, p < 0.001). Our results suggest that hepatic fat accumulation induced by DR in ZF rats might be prevented through exercise-induced modifications in FAT/CD36 and FABP1 expression.  相似文献   

10.
11.
The Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) involvement in Alzheimer’s disease (AD) is poorly investigated. We evaluated the in vitro PCSK9 modulation of astrocyte cholesterol metabolism and neuronal cholesterol supplying, which is fundamental for neuronal functions. Moreover, we investigated PCSK9 neurotoxic effects. In human astrocytoma cells, PCSK9 reduced cholesterol content (−20%; p < 0.05), with a greater effect in presence of beta amyloid peptide (Aβ) (−37%; p < 0.01). PCSK9 increased cholesterol synthesis and reduced the uptake of apoE-HDL-derived cholesterol (−36%; p < 0.0001), as well as the LDL receptor (LDLR) and the apoE receptor 2 (ApoER2) expression (−66% and −31%, respectively; p < 0.01). PCSK9 did not modulate ABCA1- and ABCG1-cholesterol efflux, ABCA1 levels, or membrane cholesterol. Conversely, ABCA1 expression and activity, as well as membrane cholesterol, were reduced by Aβ (p < 0.05). In human neuronal cells, PCSK9 reduced apoE-HDL-derived cholesterol uptake (−41%; p < 0.001) and LDLR/apoER2 expression (p < 0.05). Reduced cholesterol internalization occurred also in PCSK9-overexpressing neurons exposed to an astrocyte-conditioned medium (−39%; p < 0.001). PCSK9 reduced neuronal cholesterol content overall (−29%; p < 0.05) and increased the Aβ-induced neurotoxicity (p < 0.0001). Our data revealed an interfering effect of PCSK9, in cooperation with Aβ, on brain cholesterol metabolism leading to neuronal cholesterol reduction, a potentially deleterious effect. PCSK9 also exerted a neurotoxic effect, and thus represents a potential pharmacological target in AD.  相似文献   

12.
The immunosenescence-related disproportion in T lymphocytes may have important consequences for endothelial dysfunction, which is a key event in vascular aging. The study was designed to assess the prognostic values of the inflammatory-immune profile to better predict and prevent vascular diseases associated with old age. Eighty individuals aged 70.9 ± 5.3 years were allocated to a low- (LGI) or high-grade inflammation (HGI) group based on CRP (<3 or ≥3 mg/L) as a conventional risk marker of cardiovascular diseases. Significant changes in inflammatory and endothelium-specific variables IL-1β, IL-6, TNFα, oxLDL, H2O2, NO, 3-nitrotyrosine, and endothelial progenitor cells (OR 7.61, 95% CI 2.56–29.05, p < 0.0001), confirmed their interplay in vascular inflammation. The flow-cytometry analysis demonstrated a high disproportion in T lymphocytes CD4+ and CD8+ between LGI and HGI groups. CRP was <3 mg/mL for the CD4/CD8 ratio within the reference values ≥ 1 or ≤2.5, unlike for the CD4/CD8 ratio < 1 and >2.5. The odds ratios for the distribution of CD4+ (OR 5.98, 95% CI 0.001–0.008, p < 0.001), CD8+ (OR 0.23, 95% CI 0.08–0.59, p < 0.01), and CD8CD45RO+ T naïve cells (OR 0.27, 95% CI 0.097–0.695, p < 0.01) and CD4/CD8 (OR 5.69, 95% CI 2.07–17.32, p < 0.001) indicated a potential diagnostic value of T lymphocytes for clinical prognosis in aging-related vascular dysfunction.  相似文献   

13.
Soybean allergy presents a health threat to humans and animals. The mechanism by which food/feed allergen β-conglycinin injures the intestinal barrier has not been well understood. In this study, the changes of epithelial permeability, integrity, metabolic activity, the tight junction (TJ) distribution and expression induced by β-conglycinin were evaluated using IPEC-J2 model. The results showed a significant decrease of trans-epithelial electrical resistance (TEER) (p < 0.001) and metabolic activity (p < 0.001) and a remarkable increase of alkaline phosphatase (AP) activity (p < 0.001) in a dose-dependent manner. The expression levels of tight junction occludin and ZO-1 were decreased (p < 0.05). The reduced fluorescence of targets and change of cellular morphology were recorded. The tight junction occludin and ZO-1 mRNA expression linearly declined with increasing β-conglycinin (p < 0.001).  相似文献   

14.
Background: The aim of this study was to evaluate the role of AT1 and AT2 receptors in a periodontal inflammation experimental model. Methods: Periodontal inflammation was induced by LPS/Porphyromonas gingivalis. Maxillae, femur, and vertebra were scanned using Micro-CT. Maxillae were analyzed histopathologically, immunohistochemically, and by RT-PCR. Results: The vertebra showed decreased BMD in AT1 H compared with WT H (p < 0.05). The femur showed increased Tb.Sp for AT1 H and AT2 H, p < 0.01 and p < 0.05, respectively. The Tb.N was decreased in the vertebra (WT H-AT1 H: p < 0.05; WT H-AT2 H: p < 0.05) and in the femur (WT H-AT1 H: p < 0.01; WT H-AT2 H: p < 0.05). AT1 PD increased linear bone loss (p < 0.05) and decreased osteoblast cells (p < 0.05). RANKL immunostaining was intense for AT1 PD and WT PD (p < 0.001). OPG was intense in the WT H, WT PD, and AT2 PD when compared to AT1 PD (p < 0.001). AT1 PD showed weak immunostaining for osteocalcin compared with WT H, WT PD, and AT2 PD (p < 0.001). AT1 H showed significantly stronger immunostaining for osteonectin in fibroblasts compared to AT2 H (p < 0.01). Conclusion: AT1 receptor knockout changed bone density, the quality and number of bone trabeculae, decreased the number of osteoblast cells, and increased osteonectin in fibroblasts.  相似文献   

15.
(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.  相似文献   

16.
Minerals are required for the establishment and maintenance of pregnancy and regulation of fetal growth in mammals. Lentiviral-mediated RNA interference (RNAi) of chorionic somatomammotropin hormone (CSH) results in both an intrauterine growth restriction (IUGR) and a non-IUGR phenotype in sheep. This study determined the effects of CSH RNAi on the concentration and uptake of calcium, phosphate, and vitamin D, and the expression of candidate mRNAs known to mediate mineral signaling in caruncles (maternal component of placentome) and cotyledons (fetal component of placentome) on gestational day 132. CSH RNAi Non-IUGR pregnancies had a lower umbilical vein–umbilical artery calcium gradient (p < 0.05) and less cotyledonary calcium (p < 0.05) and phosphate (p < 0.05) compared to Control RNAi pregnancies. CSH RNAi IUGR pregnancies had less umbilical calcium uptake (p < 0.05), lower uterine arterial and venous concentrations of 25(OH)D (p < 0.05), and trends for lower umbilical 25(OH)D uptake (p = 0.059) compared to Control RNAi pregnancies. Furthermore, CSH RNAi IUGR pregnancies had decreased umbilical uptake of calcium (p < 0.05), less uterine venous 25(OH)D (vitamin D metabolite; p = 0.055), lower caruncular expression of SLC20A2 (sodium-dependent phosphate transporter; p < 0.05) mRNA, and lower cotyledonary expression of KL (klotho; p < 0.01), FGFR1 (fibroblast growth factor receptor 1; p < 0.05), FGFR2 (p < 0.05), and TRPV6 (transient receptor potential vanilloid member 6; p < 0.05) mRNAs compared to CSH RNAi Non-IUGR pregnancies. This study has provided novel insights into the regulatory role of CSH for calcium, phosphate, and vitamin D utilization in late gestation.  相似文献   

17.
Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (−38%, p < 0.05), visceral adipose tissue mass (−46%, p < 0.05), and visceral adipocyte size (−20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (−69%, p < 0.05) and infiltration of macrophages (−72%, p < 0.05), while concomitantly upregulating the expression of fatty acid β-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.  相似文献   

18.
This study aimed to evaluate the effects of hesperidin (HE) on in vitro osteoclastogenesis and dietary supplementation on mouse periodontal disease and femoral bone phenotype. RAW 264.7 cells were stimulated with RANKL in the presence or absence of HE (1, 100 or 500 µM) for 5 days, and evaluated by TRAP, TUNEL and Western Blot (WB) analyses. In vivo, C57BL/6 mice were given HE via oral gavage (125, 250 and 500 mg/kg) for 4 weeks. A sterile silk ligature was placed between the first and second right maxillary molars for 10 days and microcomputed tomography (μCT), histopathological and immunohistochemical evaluation were performed. Femoral bones subjected or not to dietary HE (500 mg/kg) for 6 and 12 weeks were evaluated using μCT. In vitro, HE 500 µM reduced formation of RANKL-stimulated TRAP-positive(+) multinucleated cells (500 µM) as well as c-Fos and NFATc1 protein expression (p < 0.05), markers of osteoclasts. In vivo, dietary HE 500 mg/kg increased the alveolar bone resorption in ligated teeth (p < 0.05) and resulted in a significant increase in TRAP+ cells (p < 0.05). Gingival inflammatory infiltrate was greater in the HE 500 mg/kg group even in the absence of ligature. In femurs, HE 500 mg/kg protected trabecular and cortical bone mass at 6 weeks of treatment. In conclusion, HE impaired in vitro osteoclastogenesis, but on the contrary, oral administration of a high concentration of dietary HE increased osteoclast numbers and promoted inflammation-induced alveolar bone loss. However, HE at 500 mg/kg can promote a bone-sparing effect on skeletal bone under physiological conditions.  相似文献   

19.
Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm. Rats were divided into six groups (eight rats each): non-treated control for 1 and 3 days of the experiments (1C and 3C, respectively), 1 and 3 days of hindlimb suspension (HS) with placebo (1H and 3H, respectively), and 1 and 3 days of HS with PANX1 inhibitor probenecid (PRB; 1HP and 3HP, respectively). When compared with 3C group there was a significant increase in ATP in soleus muscle of 3H and 3HP groups (32 and 51%, respectively, p < 0.05). When compared with 3H group, 3HP group had: (1) lower mRNA expression of E3 ligases MuRF1 and MAFbx (by 50 and 38% respectively, p < 0.05) and MYOG (by 34%, p < 0.05); (2) higher phosphorylation of p70S6k and p90RSK (by 51 and 35% respectively, p < 0.05); (3) lower levels of phosphorylated eEF2 (by 157%, p < 0.05); (4) higher level of phosphorylated GSK3β (by 189%, p < 0.05). In conclusion, PANX1 ATP-permeable channels are involved in the regulation of muscle atrophic processes by modulating expression of E3 ligases, and protein translation and elongation processes during unloading.  相似文献   

20.
Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids—triglycerides, cholesteryl esters and the lipotoxic intermediates—diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号