首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A basin-wide water quality survey for the radionuclide tritium during 2017 and 2019 provides an overview of levels in Great Lakes surface waters. All data, together with those from similar basin-wide surveys since the early 1990s, are included in the Supplemental Material. Values of tritium are lowest in Lake Superior and are highest within a region of northwestern Lake Ontario, as well as locally near a known source in Lake Huron. Twenty-year trends show declines in all of the lakes, and this is consistent with the decline in fallout from past nuclear weapons testing, the major source of tritium to the lakes. Longer-term trends, developed using values from the literature, demonstrate a marked overall reduction in tritium values since maxima in the late 1960s, with a slowing rate of decline in the most recent decade. As atmospheric fallout is reduced, the relative importance of other sources is increasing. Known releases, primarily from nuclear generating stations using heavy water, could therefore drive any future changes in Great Lakes tritium levels.  相似文献   

2.
Nitrogen fixation (NFix) is an important, yet understudied, microbial process in aquatic ecosystems, especially in the Laurentian Great Lakes (LGL). To date, a dearth of nitrogen fixation rate measurements exists in the LGL, are from temporally isolated studies, and were collected primarily from near-shore and surface water environments. Evidence of nitrogen accumulation across the Laurentian Great Lakes suggest that we do not have a firm grasp on nitrogen cycling in large lakes. Thus, we sought to quantify the spatial variability of NFix in the LGL. We found lakes are significantly different in NFix rates from one another and that rates are depth dependent. Overall mean surface NFix rates of Lakes Superior, Michigan, Huron, Erie and Ontario were 0.024, 0.020, 0.069, 0.145, and 0.078 (nmol N2/L/hr), respectively. Likewise, we found the Western, Central and Eastern basins of Lake Erie are significantly different in NFix rates (0.1540, 0.1032, 0.0738 nmol N2/L/hr). However, we found no significant difference in NFix rates between near and offshore sites in Lake Erie, which may have been biased due to a cyanobacterial bloom containing a nitrogen-fixing Dolichospermum sp. Linear regression models indicate NFix is generally positively correlated with chlorophyll-a concentration and negatively correlated with oxidized nitrogen species concentrations. However, Lakes Erie and Huron exhibited a positive linear relationship with oxidized nitrogen, suggesting that NFix may persist to meet cellular and community nitrogen demands. Together, our data highlight NFix is important despite the presence of abundant nitrogen in all LGL.  相似文献   

3.
A mass balance modelling approach was used to help understand the movement and impacts of tritium discharged from Canada Deuterium Uranium (CANDU) reactor facilities into Lake Ontario. A concentration-time model, previously developed, is updated in this study. Historical and projected tritium concentrations for Lake Ontario waters are presented. A model calculated accident scenario (10 times highest accidental release) indicates the importance of dilution to the dispersion of tritium; a “modelled” release in 2016 has tritium levels declining by the year 2030 to “previous 2016 levels”. As part of the mass balance approach, lake-bottom sediments were considered as potential radionuclide “sinks”. Tritium porewater results were noted as perturbations at depth in both short (30–50 cm cores) and long sediment core profiles (to 300 cm). These change in tritium concentrations with depth may have been due to CANDU emissions (as the most likely source) over time, based on records of accidental releases of tritiated coolant water. However, the exact process (advection and/or diffusion) responsible for the penetration of tritium into the lake bottom requires additional physical and hydrogeological characterization of the lake bottom sediments.  相似文献   

4.
Stable isotope mass balance of the Laurentian Great Lakes   总被引:2,自引:0,他引:2  
    We investigate the physical limnology of the Laurentian Great Lakes of North America using a new dataset of 18O/16O and 2H/1H ratios from over 500 water samples collected at multiple depths from 75 stations during spring and summer of 2007. δ18O and δ2H values of each lake plot in distinct clusters along a trend parallel to, but offset from, the Global Meteoric Water Line, reflecting the combined effects of evaporative enrichment and the addition of precipitation and runoff along the chain lake system. We apply our new dataset to a stable-isotope-based evaporation model that explicitly incorporates downwind lake effects, including humidity build-up and changes to the isotope composition of atmospheric vapor. Our evaporation estimates are consistent with previous mass transfer results for Michigan, Huron, Ontario and Erie, but not for Superior, which has a much longer residence time. Calculated evaporation from Superior is ~300 mm per year, less than previous estimates of ~500 mm per year, likely arising from integration of the ‘isotopic memory' of lower evaporation rates under cooler climatic conditions with greater ice-cover than the present. Uncertainties in the estimates from the stable-isotope-based model are comparable to mass transfer results, offering an independent technique for evaluating evaporation fluxes.  相似文献   

5.
6.
An updated diatom (Bacillariophyta) checklist for the Great Lakes is provided. The present checklist supplants the preliminary checklist published in The Journal for Great Lakes Research in 1978 and effectively represents a 20-year update. A series of procedures were used in this update which included: a reexamination of taxa reported in the 1978 list, additions of taxa reported from the Great Lakes during the past 20 years, and a revision of taxonomy, commensurate with systematic and nomenclatural changes which have occurred primarily during the past 8 years. 1488 diatom species or subordinate taxa are considered to be correct reports from the Great Lakes out of the 2188 diatom entities reported in the list. Of the 124 genera reported 105 are considered to be names in current use. The number of diatom species reported represents a 16.5% increase and the number of genera reported represents a 78% increase over those reported in the 1978 checklist. 13% of the species reported and 32% of the genera reported are due solely to nomenclatural changes. Results indicate that Great Lakes diatoms are a biodiverse component of the ecosystem, commensurate with the wide range of habitats found in the system. The present checklist indicates that most of the newly added species are primarily benthic or periphytic in nature and these represent largely understudied habitats. These results suggest that the present checklist may only represent approximately 70% or less of the extant diatom flora of the Great Lakes system.  相似文献   

7.
We describe development anthropogenic stress indices for coastal margins of the Laurentian Great Lakes basin. Indices were derived based on the response of species assemblages to watershed-scale stress from agriculture and urbanization. Metrics were calculated for five groups of wetland biota: diatoms, wetland vegetation, aquatic invertebrates, fishes, and birds. Previously published community change points of these assemblages were used to classify each watershed as ‘least-disturbed’, ‘at-risk’, or ‘degraded’ based on community response to these stressors. The end products of this work are an on-line map utility and downloadable data that characterize the degree of agricultural land use and development in all watersheds of the US and Canadian Great Lakes basin. Discrepancies between the observed biological condition and putative anthropogenic stress can be used to determine if a site is more degraded than predicted based on watershed characteristics, or if remediation efforts are having beneficial impacts on site condition. This study provides a landscape-scale evaluation of wetland condition that is a critical first step for multi-scale assessments to help prioritize conservation or restoration efforts.  相似文献   

8.
Resource management agencies in the Laurentian Great Lakes routinely conduct studies of fish movement and migration to understand the temporal and spatial distribution of fishes within and between the lakes and their tributaries. This literature has never been summarized and evaluated to identify common themes and future research opportunities. We reviewed 112 studies, published between 1952 and 2010, with the goal of summarizing existing research on the movement and migration of fishes in the Laurentian Great Lakes. The most commonly studied species were Lake Trout (Salvelinus namaycush), Walleye (Sander vitreus), and Lake Sturgeon (Acipenser fulvescens). Studies relied mainly on mark-recapture techniques with comparatively few using newer technologies such as biotelemetry, hydroacoustics, or otolith microchemistry/isotope analysis. Most movement studies addressed questions related to reproductive biology, effects of environmental factors on movement, stocking, and habitat use. Movement-related knowledge gaps were identified through the literature synthesis and a survey distributed to Great Lakes fisheries managers. Future studies on emigration/immigration of fishes through lake corridors, the dispersal of stocked fishes and of stock mixing were identified as being particularly important given their potential for developing lake- or region-wide harvest regulations and stocking strategies. The diversity of tools for studying fish movement across multiple years and various spatial scales gives researchers new abilities to address key science questions and management needs. Addressing these needs has the potential to improve upon existing fisheries management practices within the complexity of multi-jurisdictional governance in the Laurentian Great Lakes.  相似文献   

9.
A database of nearly 500 analyses of perchlorate in water samples from the Laurentian Great Lakes (LGL) watershed is presented, including samples from streams, from the Great Lakes and their connecting waters, with a special emphasis on Lake Erie. These data were assessed to test an earlier hypothesis that loading of perchlorate to the LGL watershed is relatively uniform. Higher perchlorate concentrations in streams in more developed and urban areas appear to indicate higher rates of loading from anthropogenic sources in these areas. Variable perchlorate concentrations in samples from Lake Erie indicate transient (un-mixed) conditions, and suggest loss by microbial degradation, focused in the central basin of that lake. Interpretation of the data included estimation of annual loading by streams in various sub-watersheds, and simulations (steady state and transient state) of the mass balance of perchlorate in the Great Lakes. The results suggest uneven loading from atmospheric deposition and other sources.  相似文献   

10.
Management of a widely distributed species can be a challenge when management priorities, resource status, and assessment methods vary across jurisdictions. For example, restoration and preservation of coregonine species diversity is a goal of management agencies across the Laurentian Great Lakes. However, management goals and the amount of information available varies across management units, making the focus for management efforts challenging to determine. Genetic data provide a spatially consistent means to assess diversity. Therefore, we examined the genetic stock structure of cisco (Coregonus artedi) in the Great Lakes where the species is still extant. Using genotype data from 17 microsatellite DNA loci, we observed low levels of population structure among collections with most contributions to overall diversity occurring among lakes. Cisco from lakes Superior, Michigan, Ontario, and the St. Marys River could be considered single genetic populations while distinct genetic populations were observed among samples from northern Lake Huron. Significant within-lake diversity in Lake Huron is supported by populations found in embayments in northern Lake Huron. The Grand Traverse Bay population in Lake Michigan represents a distinct population with reduced levels of genetic variation when compared to other lakes. The different levels of within lake population structure we observed will be important to consider as future lake-specific management plans are developed.  相似文献   

11.
The Laurentian Great Lakes of North America have been a focus of environmental and ecosystem research since the Great Lakes Water Quality Agreement in 1972. This study provides a review of scientific literature directed at the assessment of Laurentian Great Lakes coastal ecosystems. Our aim was to understand the methods employed to quantify disturbance and ecosystem quality within Laurentian Great Lakes coastal ecosystems within the last 20 years. We focused specifically on evidence of multidisciplinary articles, in authorship or types of assessment parameters used. We sought to uncover: 1) where Laurentian Great Lakes coastal ecosystems are investigated, 2) how patterns in the disciplines of researchers have shifted over time, 3) how measured parameters differed among disciplines, and 4) which parameters were used most often. Results indicate research was conducted almost evenly across the five Laurentian Great Lakes and that publication of coastal ecosystems studies increased dramatically ten years after the first State of the Great Lakes Ecosystem Conference in 1994. Research authored by environmental scientists and by multiple disciplines (multidisciplinary) have become more prevalent since 2003. This study supports the likelihood that communication and knowledge-sharing is happening between disciplines on some level. Multidisciplinary or environmental science articles were the most inclusive of parameters from different disciplines, but every discipline seemed to include chemical parameters less often than biota, physical, and spatial parameters. There is a need for an increased understanding of minor nutrient, toxin, and heavy metal impacts and use of spatial metrics in Laurentian Great Lakes coastal ecosystems.  相似文献   

12.
Ongoing human perturbations to the global inorganic carbon cycle can cause various changes in the pH and alkalinity of aquatic systems. Here seasonal and inter-annual trends in these variables were investigated in the five Laurentian Great Lakes using data from the U.S. EPA GLENDA database. These observations, along with temperature, were also used to predict the partial pressure of carbon dioxide in surface water (pCO2). There are strong seasonal differences in pH in all five lakes, with higher pH levels in summer than in spring. All lakes show significantly higher pCO2 values in spring than in summer. Michigan and Ontario show higher alkalinity values in spring; Huron shows lower spring values. Inter-annually, open-lake pH shows the highest values in all lakes around 2010, the time frame of lowest lake water levels, though only lakes Superior and Erie show statistically significant inflection points at that time. Inter-annual alkalinity trends differ considerably from those of pH. Superior’s alkalinity increases until ~2008 and then begins dropping; Ontario’s alkalinity decreases until ~2004 and then begins increasing, with the decrease coinciding with the introduction and establishment of Dreissenid mussels. The other lakes show much less clear inter-annual alkalinity trends. For pCO2, inter-annual trends in each lake show either increases from 1992 to 2019 (for Superior, Michigan, and Huron) or shifts from slightly decreasing values to increasing values for the other lakes. The timing of this shift is from 2008 to 2010.  相似文献   

13.
Underwater video is increasingly used to study aspects of the Great Lakes benthos including the abundance of round goby and dreissenid mussels. The introduction of these species has resulted in major ecological shifts in the Great Lakes, but the abundance and impacts of these species have heretofore been underassessed due to limitations of monitoring methods. Underwater video (UVID) can “sample” hard bottom sites where grab samplers cannot. Efficient use of UVID data requires affordable and accurate classification and analysis tools. Deep Lake Explorer (DLE) is a web application developed to support crowdsourced classification of UVID collected in the Great Lakes. Volunteers (i.e., the crowd) used DLE to classify 199 videos collected in the Niagara River, Lake Huron, and Lake Ontario for the presence of round gobies, dreissenid mussels, or aquatic vegetation, and for dominant substrate type. We compared DLE classification results to expert classification of the same videos to evaluate accuracy. DLE had the lowest agreement with expert classification for hard substrate (77%), and highest agreement for vegetation presence (90%), with intermediate agreement for round goby and mussel presence (89% and 79%, respectively). Video quality in the application, video processing, abundance of species of interest, volunteer experience, and task complexity may have affected accuracy. We provide recommendations for future crowdsourcing projects like DLE, which can increase timeliness and decrease costs for classification but may come with tradeoffs in accuracy and completeness.  相似文献   

14.
Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton-zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.  相似文献   

15.
Renibacterium salmoninarum (RS), the causative agent of bacterial kidney disease, has been a serious threat to salmonid health in the Laurentian Great Lakes. Despite its wide spread presence in the Great Lakes basin, little is known about RS ecology and the potential role of non-salmonid species as one of the pathogen’s reservoirs. This information is of paramount importance to fishery managers in order to better understand RS distribution in the different biotic components of the Great Lakes watershed. In this study, non-salmonid species from lakes Michigan and Huron, and from 13 inland waters of the Great Lakes watershed were collected from 1999 to 2008. Out of 380 fish sampled from lakes Michigan and Huron, 42 (11.05%) tested positive for RS as determined by the nested polymerase chain reaction. Prevalence was lower in Lake Huron (5.71%) compared to Michigan (20.74%), but the difference was not statistically significant. Prevalence of RS was not found to be significantly different between species or sites; however, when species were grouped into demersal vs. pelagic categories, significant differences (P < 0.01) in prevalence were observed. Out of 607 fish sampled from inland waters, 111 (18.28%) tested positive for RS as determined by the sandwich enzyme-linked immunosorbent assay. Infection prevalence was highly variable across species and among localities. Our results indicate that many non-salmonid species can harbor this bacterium without progression to disease and may become a reservoir for infection.  相似文献   

16.
Plastic pollution is ubiquitous in freshwater systems worldwide, and the Laurentian Great Lakes are no exception. We conducted a systematic review to synthesize the current state of the literature on plastic pollution, including macroplastics (>5 mm) and microplastics (<5 mm), in the Great Lakes. Thirty-four publications were used in our systematic review. We found ubiquitous contamination of microplastics in surface water, with maximum abundances exceeding those in ocean gyres. There are also high levels of plastic contamination reported across benthic sediments and shorelines of the Great Lakes. Citizen science data reveals macroplastic across Great Lakes shorelines, with more than three million pieces of plastic litter recorded over a span of three years. We completed a second systematic review of plastic pollution and its impact on freshwater ecosystems in general to inform how plastic in the Great Lakes may impact wildlife. Among studies published in the literature, we found 390 tested effects, 234 (60%) of which were detected and 156 (40%) of which were not; almost all of the freshwater effects (>98%) were tested on microplastics. Based on a subset of these papers, we found that the shape and size of a particle likely affects whether an effect is detected, e.g., more effects are detected for smaller particles. Finally, we identify gaps in scientific knowledge that need to be addressed and discuss how the state of the science can inform management strategies.  相似文献   

17.
We investigated several common, needle-shaped diatoms to better characterize the taxonomy of the genus Fragilaria in the Laurentian Great Lakes. We conducted diatom morphometric analysis facilitated by SEM and LM imaging on samples collected as a part of the USEPA’s long-term biological monitoring program. We resolved several decades-long taxonomic problems in the Great Lakes. The results indicated that previous records of species formerly belonging to the genus Synedra, such as S. (Fragilaria) ostenfeldii, S. (Fragilaria) radians, and S. filiformis, should be corrected as these species likely do not occur in the Great Lakes. Valve morphology confirmed the presence of four previously undescribed species: Fragilaria andreseniana sp. nov., Fragilaria stoermeriana sp. nov., Fragilaria limnetica sp. nov., and Fragilaria michiganensis sp. nov. The morphology of several other Fragilaria taxa in the Great Lakes was examined, including a teratologic taxon (Fragilaria sp. 1), Fragilaria crotonensis, Fragilaria grunowii, and a taxon showing morphological affinity to Fragilaria lemanensis (reported here as Fragilaria cf. lemanensis). The spatial and seasonal distributions of these needle-shaped taxa were also analyzed and discussed.  相似文献   

18.
Accounting for community opinions of environmental restoration is critical both for planning and evaluating these initiatives. While considerable research assesses the value of restoration through economic metrics focusing on expenditures or preferences for ecosystem services, these metrics may not adequately account for the sociocultural services that ecosystems provide communities, such as mental and physical health or recreational opportunities. To address this challenge, we explored the use of social media data to assess online discourse communities’ opinions about ecosystem services through a case study of Twitter mentions of sites targeted for restoration through the Great Lakes Restoration Initiative (GLRI). While there is evidence of the economic and ecological benefits of GLRI, little is known about how these benefits at sites targeted for funding are perceived by the public. From April through October 2019, we collected 40,000 tweets that mentioned an Area of Concern or a Great Lakes National Park that received GLRI funding. We used a mixed-methodological approach combining tweet content and sentiment analysis to determine themes of discussion and characterize online discourse communities’ opinions around these topics. Half of all tweets were about one of three Areas of Concern, and recreation was the most discussed theme with an overall positive sentiment. A metric accounting for the number of tweets and the sentiment of tweets was derived to understand community opinions of restoration at these areas. Our findings demonstrate the potential of social media data mining as a tool for examining online conversations about and engagement with the Great Lakes.  相似文献   

19.
We analyzed and compared the structure of bacterial communities associated with zebra mussel mantle cavity fluid, gills, and gut samples collected from Lake Loon, an inland lake in Michigan's Lower Peninsula (U.S.A.) using partial 16S rRNA gene sequencing. A total of 713 cloned 16S ribosomal gene sequences were checked for similarity to existing 16S sequences in two public databases: the Ribosomal Database Project and BLAST. Based on a 98% sequence similarity threshold, a total of 355 phylotypes belonging to 12 bacterial phyla and the phylum Bacillariophyta (diatoms) were identified in zebra mussel samples. A dominance of sequences belonging to the class γ-proteobacteria was observed in the mantle cavity clone libraries (P < 0.0001). Significant sample-specific sequence associations (P < 0.001) included members of the orders Pseudomonadales and Vibrionales in mantle cavity fluid and gut clone libraries, members of both the phylum Actinobacteria and the class δ-proteobacteria in gill clone libraries, and the Cyanobacteria/Bacillariophyta group in gut clone libraries. Furthermore, our results suggest that the zebra mussel may serve as a reservoir for facultative and opportunistic pathogenic bacteria, e.g., Clostridium spp., Flavobacterium spp. and Mycobacterium spp., for many aquatic and terrestrial animals. This work constitutes the first account of the heterogeneity of bacterial communities associated with multiple compartments within the zebra mussel. The information gained in this study significantly contributes to what is known regarding the microbial ecology of the zebra mussel and its role in disease ecology and food-web shifts in the Great Lakes ecosystem.  相似文献   

20.
Despite increasing recognition of the importance of invertebrates, and specifically crayfish, to nearshore food webs in the Laurentian Great Lakes, past and present ecological studies in the Great Lakes have predominantly focused on fishes. Using data from many sources, we provide a summary of crayfish diversity and distribution throughout the Great Lakes from 1882 to 2008 for 1456 locations where crayfish have been surveyed. Sampling effort was greatest in Lake Michigan, followed by lakes Huron, Erie, Superior, and Ontario. A total of 13 crayfish species occur in the lakes, with Lake Erie having the greatest diversity (n = 11) and Lake Superior having the least (n = 5). Five crayfish species are non-native to one or more lakes. Because Orconectes rusticus was the most widely distributed non-native species and is associated with known negative impacts, we assessed its spread throughout the Great Lakes. Although O. rusticus has been found for over 100 years in Lake Erie, its spread there has been relatively slow compared to that in lakes Michigan and Huron, where it has spread most rapidly since the 1990s and 2000, respectively. O. rusticus has been found in both lakes Superior and Ontario for 22 and 37 years, respectively, and has expanded little in either lake. Our broad spatial and temporal assessment of crayfish diversity and distribution provides a baseline for future nearshore ecological studies, and for future management efforts to restore native crayfish and limit non-native introductions and their impact on food web interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号