首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Since the output voltage of the proton exchange membrane fuel cell (PEMFC) is relatively low and load-dependent, a high-performance fuel cell front-end converter is required to achieve boost and power regulation in PEMFC systems. In response, a novel family of high gain fuel cell front-end converters with low input current ripple is proposed. The proposed topologies can substantially improve the voltage gain through the expansion and combination of active switched-inductor networks and passive switched-capacitor units. The introduced interleaved parallel structure is convenient to limit the current ripple on the input side to prevent accelerated aging of fuel cells, which is another prominent advantage. Meanwhile, the converters can achieve the automatic current sharing between parallel inductors and the low voltage stress on active switches and diodes. In this paper, the fuel cell model and topology derivation of the high gain fuel cell front-end converters are first analyzed. Then, it further describes the operating mode and steady-state performance of converters under the inductor current continuous conduction mode. The comparison with other converters shows that this converter is suitable for connecting the PEMFC to the high voltage DC bus. Finally, a 200 W, 20/180 V converter prototype is implemented, and the simulation and experiment prove the theoretical correctness and validate the superior performances of the proposed converters.  相似文献   

2.
This work describes a step-up non-isolated DC/DC converter aimed for fuel cell stand-alone power systems. The proposed converter has the following features: simple structure based on the basic boost topology that reduces the number of components; it uses the interleaving technique in order to reduce the current ripple at the input and output sides, reduction of the inductors size, higher frequency that reduce the output filter capacitor and easier power losses management. In addition, the use of an inner current control loop in the input side assures power sharing and easy module parallelization. The converter feeds a backup battery that maintains a DC voltage level at the main bus. An outer battery-charging loop controls the converter. Experimental validation is given for a four-phases 1 kW prototype at 100 kHz PWM switching frequency connected to a Nexa Ballard (1.2 kW-46 A) PEM fuel cell.  相似文献   

3.
The dc voltage generated from fuel cell is low in magnitude, unregulated and load dependent. Hence, it is required to be regulated and boosted by high performance dc-dc converter. In this paper, a fully soft-switched pulse-width-modulated dc-dc boost converter has been proposed for fuel cell applications. The proposed converter operates at high switching frequency with high efficiency and large power to volume ratio. A laboratory prototype model of the proposed converter has been designed and fabricated for charging a battery bank at 110 V from a fuel cell stack SR-12 of Avista Lab. The experimental results were found in close agreement with the predicted behavior.  相似文献   

4.
Solar photovoltaics (PVs) have nonlinear voltage–current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC–DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.  相似文献   

5.
This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme.  相似文献   

6.
The energy use of the world grows continuously and the development of a clean distributed power generation becomes environmentally important. Fuel cells are one such integral part of Renewable Energy Sources based clean energy supply; that they operate with hydrogen as fuel and water with heat as process waste. Due to the electrochemical reaction, fuel cell has the power quality of delivering low voltage with high current capability. Here an attempt is made to develop a power conditioner with a series of conversion to get a 220 V sinusoidal AC, 50 Hz single phase voltage of low distortion and fast dynamic regulation to cater load variations. A novel Polyphase Boost DC-to-DC switching converter based on parallel connection of 8 identical converters with current mode control is devised to have minimum reflected ripple current and voltage injected to fuel cell input. A full bridge converter with high frequency transformer isolation, step-up the DC voltage level from the low voltage fuel cell along with poly phase boost converter, deliver required DC to the PWM inverter, which generate AC utility power output. Recent trend of Ultra-capacitor based transient energy storage and retrieval system, to cater for the sluggish behavior of fuel cell, for load transients is incorporated. DSP and FPGA based digital real time controllers are used to realize the gating of MOSFETs and IGBTs used in the power conditioner. A 1 kW power conditioner is developed for a PAFC fuel cell system with 12 V DC nominal and their performance evaluations are satisfactory.  相似文献   

7.
This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current.  相似文献   

8.
In this paper, an interleaved soft-switched active-clamped L–L type current-fed half-bridge isolated dc–dc converter has been proposed. The L–L type active-clamped current-fed converter is able to maintain zero-voltage switching (ZVS) of all switches for the complete operating range of wide fuel cell stack voltage variation at full load down to light load conditions. Active-clamped circuit absorbs the turn-off voltage spike across the switches. Half-bridge topology maintains higher efficiency due to lower conduction losses. Soft-switching permits higher switching frequency operation, reducing the size, weight and cost of the magnetic components. Interleaving of the two isolated converters is done using parallel input series output approach and phase-shifted modulation is adopted. It reduces the input current ripple at the fuel cell input, which is required in a fuel cell system and also reduces the output voltage ripples. In addition, the size of the magnetic/passive components, current rating of the switches and voltage ratings of the rectifier diodes are reduced.  相似文献   

9.
This paper presents the design and development of a practical multi-leg fuel cell boost converter. The applied multi-leg topology and the interleaved switching method can effectively reduce fuel cell current ripple to meet the suggested limitation of 4%. Input inductors play a critical role for ripple current reduction, while output capacitors are used for specified output voltage performance. In the selection of the input inductors and the output capacitors, this paper uniquely presents an analytic method for obtaining optimum parameter values. The design considerations include leg number, switching frequency, output loads, and dynamic response. Novel equivalent models with equivalent series resistors for multi-leg boost converters are proposed. This model can simplify the analysis of multi-leg converters and is thus used for compensation design. To verify the analytic results, Intersil ISL6556B integrated circuit is used to implement two-, three-, and four-leg fuel cell boost converters rated 1000 W. Finally, the experimental results show that the four-leg one can have lower ripple factor than its two- and three-leg counterparts, and meet the limitation of fuel cell output current ripple factor of 4%.  相似文献   

10.
Fuel cell power systems have increasingly become popular because of their inherent advantages over conventional energy systems. A fuel cell system typically requires some kind of power conditioning that usually includes a DC–DC converter and a DC-AC inverter. In a single phase system, the operation of a single phase inverter introduces a second harmonic (120 Hz) current ripple into the system. This ripple has been found to be detrimental to the performance, life and efficiency of the fuel cell if it is not adequately controlled. This paper proposes an active filtering method to cancel the second harmonic current ripple drawn from the fuel cell source in a single phase fuel cell system. This approach provides an alternate path for the 120 Hz current preventing it from flowing through the fuel cell. The conventional and the proposed systems have been simulated using PSpice and the results have been presented. Experimental results from a laboratory prototype are also included to validate the proposed approach. A major feature of this implementation is the use of a DSP TMS 320F2808 for the overall control and monitoring of the system.  相似文献   

11.
This paper addresses an improved optimization method to enhance the energy extraction capability of fuel cell implementations. In this study, the proposed method called Dynamic Cuckoo Search Algorithm (DCSA) is tested in a stand-alone fuel cell in order to control the system power under dynamic temperature response. In the operational process, a fuel cell is connected to a load through a dc-dc boost converter, and DCSA is utilized to adjust the switching duration in dc-dc converter by using voltage, current and temperature parameters. In this way, it controls the output voltage to maximize power delivery capability at the demand-side and eliminates the drawback of conventional cuckoo search algorithm (CSA) which cannot change duty cycle under operating temperature variations. In this regard, DCSA shows a significant improvement in terms of system response and achieves a more efficient power extraction than the conventional CSA method. In order to demonstrate the system performance, the stand-alone fuel cell system is constructed in Simulink environment via a processor-in the-loop (PIL) based digital implementation and analyzed by using different optimization methods. In the analysis section, the results of the proposed method are compared with conventional methods (perturb&observe mppt, incremental conductance mppt, and particle swarm optimization). In this context, convergence speed and efficiency analysis for both methods verify that the DCSA gives original results compared to conventional methods.  相似文献   

12.
In this study, a two-stage battery charger architecture with high-efficiency, multi-input, and output half-bridge LLC (HBLLC) resonance converter that performs a wide load range is proposed. The first input of the HBLLC is provided by the photovoltaic (PV) panel assembly on the vehicle. A high efficiency and fast maximum power point tracking (MPPT) algorithm has been developed for the PV panel to operate at the maximum power point. The other input is supplied by a grid-connected AC-DC bridgeless power factor correction (PFC) converter, which is controlled with the average current mode (ACM) control method. The most important feature that distinguishes the designed topology from previous studies is that it charges the low-voltage battery through the PV panel. In previous studies, the low-voltage battery was being charged via the high-voltage battery. This allowed the high-voltage battery to transfer power to the low-voltage battery even when it was not charged. However, in the proposed architecture, the low-voltage battery is fed by a PV panel. This condition allows the electric vehicle to take more miles with a single charge process. Furthermore, the proposed architecture reduces energy costs in the long term by providing some of the energy demanded from the grid. In addition, the proposed integrated battery charging circuit is intended to reduce the cost of additional cables. The system is designed as 3.1 kW power and operated under no load to full load. As for the performance of the proposed architecture, the peak efficiency of the LLC resonant converter is 95.3%. In addition, peak efficiency of the AC-DC bridgeless PFC converter is 97.3%, while the power factor is higher than 0.99, input current total harmonic distortion (THD) is less than 5%, MPPT method accuracy is higher than 99%, and output voltage ripples (ΔV) is less than 1 V.  相似文献   

13.
The low frequency current ripple in grid-connected fuel cell systems is generated from dc–ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc–dc converter to dc–ac inverter, resulting that dc–ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype.  相似文献   

14.
This work introduces the development of a power-electronics customizable energy system for their application on renewable energy generation based on proton-exchange membrane fuel cells. The customizable energy system aims to regulate the output voltage from a fuel cell, which has a relatively low amplitude and wide range of variation, to a fixed voltage to feed a grid-tie inverter. The customizable energy system proposed is based on a dc-dc converter for which different configurations (topologies) are available, such as the traditional single-phase boost or the (interleaved) multi-phase boost. The dc-dc converter of the energy system is based on the series-capacitor boost converter, a recently proposed converter that has a similar configuration to the interleaved boost converter. This article shows that the series-capacitor boost topology offers benefits in the proposed application. An experimental prototype was developed and tested in order to demonstrate the advantages of the system proposed.  相似文献   

15.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

16.
An air-breathing fuel cell was investigated as an alternate power source for a laptop computer application. An empirical model was developed to include the phenomena of activation and ohmic polarisation as well as mass transport effects in order to simulate the behaviour of an air-breathing fuel cell. The model was used as the input source for a quadratic buck converter, which is used to power the central processing unit (CPU) core at 1 V. To achieve tight voltage regulation and good dynamic performance, the quadratic buck converter was implemented with average current mode control. The quadratic buck converter hardware setup has been developed with a fabricated fuel cell module in order to validate the model of the air-breathing fuel cell as well as the voltage regulator module.  相似文献   

17.
Fuel cells are being increasingly used for stand alone and grid connected systems in wide range of applications due to their high efficiency and low emissions. Because of unregulated nature of fuel cell voltage a power conditioning unit, consisting of DC-DC converter and an inverter, is invariably used as an interface between the fuel cell and the load in a typical fuel cell system for ac applications. Major issues with the use of fuel cells for ac applications are the low frequency pulsating current propagation on to the fuel cell side and dynamic response to various loads during transient conditions. Low frequency pulsating currents are reported to affect reactant utilization, degrade the performance and life of fuel cells. These current ripples can be reduced by filters with passive elements having bulky inductor and capacitor in the dc-link between the fuel cell and the inverter but, it will add to the weight and cost. DC-DC converters of different configurations are being used in the power conditioning unit of fuel cell systems. These converters are operated at high frequencies and the filtering units of these converters have minimal effect on low frequency ripple. But, it is observed that different configurations of power conditioner with same filtering components perform differently for the low frequency current ripple of the inverter load by mitigating the power mismatch between load and source at the DC link. This paper investigates and compares the low frequency current ripple mitigation by cascaded converters with conventional push-pull and also with series connected converters in the power conditioning stage of fuel cell system for ac applications. Parameters such as peak switching currents, the percentage of peak to DC level of low frequency current ripple are analyzed using these conversion topologies in power conditioning unit. The analytical and simulation results related to the study are presented. Key results are verified with experimental work.  相似文献   

18.
This work focuses on the application of the high frequency DC–DC converters used in electric vehicles. Two converters are necessary. The first converter is interposed between the fuel cell and the DC–AC inverter. It is unidirectional. The second one is used as interface between the ultra-capacitor and the DC–AC inverter. It allows the bidirectional of the power transfer. Each converter is composed of two full bridges, LC resonant filter and two planar transformers. The use of high frequency transformer allows to minimize the size and weight of the converter, produce a higher voltage in secondary side from input voltage (fuel cell or super-capacitor) and isolate the full bridges. The control strategy of the converters is the phase shift. The converters have been designed, realised and controlled by an FPGA board. To demonstrate the converters feasibility, two converters are implemented and tested. The switching frequency of two converters is 20 kHz. The first converter has a 24-V input and 200 V/1.2 kW output. But, the second converter has a 12.5-V input and 100 V/400 W output.  相似文献   

19.
In recent years, many researchers have proposed new DC/DC converters in order to meet the fuel cell requirements. The reliability of these DC/DC converters is crucial in order to guarantee the availability of fuel cell systems. In these converters, power switches ranked the most fragile components. In order to enhance the reliability of DC/DC converters, fuel cell systems have to include fault-tolerant topologies. Usually, dynamic redundancy is employed to make a fault-tolerant converter. Despite this kind of converter allows ensuring a continuity of service in case of faults, the use of dynamic redundancy gets back to increase the complexity of the converter. In order to cope with reliability expectations in DC/DC converters, floating interleaved boost converters seem to be the best solution. Indeed, they have much to offer for fuel cells and DC renewable energy sources (i.e. photovoltaic system), including reduced input current ripple and reliability in case of faults. Despite the offered benefits of this topology, operating degraded modes lead up to undesirable effects such as electrical overstress on components and input current ripple increasing. The aim of this paper is to carry out a thorough analysis of these undesirable effects and to propose remedial strategies to minimize them.  相似文献   

20.
In this paper, an integrated double boost SEPIC (IDBS) converter is proposed as a high step-up converter. The proposed converter utilizes a single controlled power switch and two inductors and is able to provide high voltage gain without extreme switch duty-cycle. The two inductors can be coupled into one core for reducing the input current ripple without affecting the basic DC characteristic of the converter. Moreover, the voltage stresses across all the semiconductors are less than half of the output voltage. The reduced voltage stress across the power switch enables the use of a lower voltage and RDS-ON MOSFET switch, which will further reduce the conduction losses. Whereas, the low voltage stress across the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current problem, leading to a further reduction in the switching and conduction losses. A detailed circuit analysis is performed to derive the design equations. A design example for a 100-W/240 Vdc with 24 Vdc input voltage is provided. The feasibility of the converter is confirmed with results obtained from simulation and an experimental prototype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号